• Title/Summary/Keyword: Neurophysiology

Search Result 655, Processing Time 0.029 seconds

Study on Neuron Activities for Adversarial Examples in Convolutional Neural Network Model by Population Sparseness Index (개체군 희소성 인덱스에 의한 컨벌루션 신경망 모델의 적대적 예제에 대한 뉴런 활동에 관한 연구)

  • Youngseok Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Convolutional neural networks have already been applied to various fields beyond human visual processing capabilities in the image processing area. However, they are exposed to a severe risk of deteriorating model performance due to the appearance of adversarial attacks. In addition, defense technology to respond to adversarial attacks is effective against the attack but is vulnerable to other types of attacks. Therefore, to respond to an adversarial attack, it is necessary to analyze how the performance of the adversarial attack deteriorates through the process inside the convolutional neural network. In this study, the adversarial attack of the Alexnet and VGG11 models was analyzed using the population sparseness index, a measure of neuronal activity in neurophysiology. Through the research, it was observed in each layer that the population sparsity index for adversarial examples showed differences from that of benign examples.

Intraoperative Nerve Monitoring during Minimally Invasive Esophagectomy and 3-Field Lymphadenectomy: Safety, Efficacy, and Feasibility

  • Srinivas Kodaganur Gopinath;Sabita Jiwnani;Parthiban Valiyuthan;Swapnil Parab;Devayani Niyogi;Virendrakumar Tiwari;C. S. Pramesh
    • Journal of Chest Surgery
    • /
    • v.56 no.5
    • /
    • pp.336-345
    • /
    • 2023
  • Background: The objective of this study was to demonstrate the safety, efficacy, and feasibility of intraoperative monitoring of the recurrent laryngeal nerves during thoracoscopic and robotic 3-field esophagectomy. Methods: This retrospective analysis details our initial experience using intraoperative nerve monitoring (IONM) during minimally invasive 3-field esophagectomy. Data were obtained from a prospectively maintained database and electronic medical records. The study included all patients who underwent minimally invasive (video-assisted thoracic surgery/robotic) transthoracic esophagectomy with neck anastomosis. The patients were divided into those who underwent IONM during the study period and a historical cohort who underwent 3-field esophagectomy without IONM at the same institution. Appropriate statistical tests were used to compare the 2 groups. Results: Twenty-four patients underwent nerve monitoring during minimally invasive 3-field esophagectomy. Of these, 15 patients underwent thoraco-laparoscopic operation, while 9 received a robot-assisted procedure. In the immediate postoperative period, 8 of 24 patients (33.3%) experienced vocal cord paralysis. Relative to a historical cohort from the same institution, who were treated with surgery without nerve monitoring in the preceding 5 years, a 26% reduction was observed in the nerve paralysis rate (p=0.08). On follow-up, 6 of the 8 patients with vocal cord paralysis reported a return to normal vocal function. Additionally, patients who underwent IONM exhibited a higher nodal yield and a decreased frequency of tracheostomy and bronchoscopy. Conclusion: The use of IONM during minimally invasive 3-field esophagectomy is safe and feasible. This technique has the potential to decrease the incidence of recurrent nerve palsy and increase nodal yield.

Intraoperative Neurophysiological Monitoring : A Review of Techniques Used for Brain Tumor Surgery in Children

  • Kim, Keewon;Cho, Charles;Bang, Moon-suk;Shin, Hyung-ik;Phi, Ji-Hoon;Kim, Seung-Ki
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.3
    • /
    • pp.363-375
    • /
    • 2018
  • Intraoperative monitoring (IOM) utilizes electrophysiological techniques as a surrogate test and evaluation of nervous function while a patient is under general anesthesia. They are increasingly used for procedures, both surgical and endovascular, to avoid injury during an operation, examine neurological tissue to guide the surgery, or to test electrophysiological function to allow for more complete resection or corrections. The application of IOM during pediatric brain tumor resections encompasses a unique set of technical issues. First, obtaining stable and reliable responses in children of different ages requires detailed understanding of normal age-adjusted brain-spine development. Neurophysiology, anatomy, and anthropometry of children are different from those of adults. Second, monitoring of the brain may include risk to eloquent functions and cranial nerve functions that are difficult with the usual neurophysiological techniques. Third, interpretation of signal change requires unique sets of normative values specific for children of that age. Fourth, tumor resection involves multiple considerations including defining tumor type, size, location, pathophysiology that might require maximal removal of lesion or minimal intervention. IOM techniques can be divided into monitoring and mapping. Mapping involves identification of specific neural structures to avoid or minimize injury. Monitoring is continuous acquisition of neural signals to determine the integrity of the full longitudinal path of the neural system of interest. Motor evoked potentials and somatosensory evoked potentials are representative methodologies for monitoring. Free-running electromyography is also used to monitor irritation or damage to the motor nerves in the lower motor neuron level : cranial nerves, roots, and peripheral nerves. For the surgery of infratentorial tumors, in addition to free-running electromyography of the bulbar muscles, brainstem auditory evoked potentials or corticobulbar motor evoked potentials could be combined to prevent injury of the cranial nerves or nucleus. IOM for cerebral tumors can adopt direct cortical stimulation or direct subcortical stimulation to map the corticospinal pathways in the vicinity of lesion. IOM is a diagnostic as well as interventional tool for neurosurgery. To prove clinical evidence of it is not simple. Randomized controlled prospective studies may not be possible due to ethical reasons. However, prospective longitudinal studies confirming prognostic value of IOM are available. Furthermore, oncological outcome has also been shown to be superior in some brain tumors, with IOM. New methodologies of IOM are being developed and clinically applied. This review establishes a composite view of techniques used today, noting differences between adult and pediatric monitoring.

Motor Imagery Brain Signal Analysis for EEG-based Mouse Control (뇌전도 기반 마우스 제어를 위한 동작 상상 뇌 신호 분석)

  • Lee, Kyeong-Yeon;Lee, Tae-Hoon;Lee, Sang-Yoon
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.2
    • /
    • pp.309-338
    • /
    • 2010
  • In this paper, we studied the brain-computer interface (BCI). BCIs help severely disabled people to control external devices by analyzing their brain signals evoked from motor imageries. The findings in the field of neurophysiology revealed that the power of $\beta$(14-26 Hz) and $\mu$(8-12 Hz) rhythms decreases or increases in synchrony of the underlying neuronal populations in the sensorymotor cortex when people imagine the movement of their body parts. These are called Event-Related Desynchronization / Synchronization (ERD/ERS), respectively. We implemented a BCI-based mouse interface system which enabled subjects to control a computer mouse cursor into four different directions (e.g., up, down, left, and right) by analyzing brain signal patterns online. Tongue, foot, left-hand, and right-hand motor imageries were utilized to stimulate a human brain. We used a non-invasive EEG which records brain's spontaneous electrical activity over a short period of time by placing electrodes on the scalp. Because of the nature of the EEG signals, i.e., low amplitude and vulnerability to artifacts and noise, it is hard to analyze and classify brain signals measured by EEG directly. In order to overcome these obstacles, we applied statistical machine-learning techniques. We could achieve high performance in the classification of four motor imageries by employing Common Spatial Pattern (CSP) and Linear Discriminant Analysis (LDA) which transformed input EEG signals into a new coordinate system making the variances among different motor imagery signals maximized for easy classification. From the inspection of the topographies of the results, we could also confirm ERD/ERS appeared at different brain areas for different motor imageries showing the correspondence with the anatomical and neurophysiological knowledge.

  • PDF

ERS Feature Extraction using STFT and PSO for Customized BCI System (맞춤형 BCI시스템을 위한 STFT와 PSO를 이용한 ERS특징 추출)

  • Kim, Yong-Hoon;Kim, Jun-Yeup;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.429-434
    • /
    • 2012
  • This paper presents a technology for manipulating external devices by Brain Computer Interface (BCI) system. Recently, BCI based rehabilitation and assistance system for disabled people, such as patient of Spinal Cord Injury (SCI), general paralysis, and so on, is attracting tremendous interest. Especially, electroencephalogram (EEG) signal is used to organize the BCI system by analyzing the signals, such as evoked potential. The general findings of neurophysiology support an availability of the EEG-based BCI system. We concentrate on the event-related synchronization of motor imagery EEG signal, which have an affinity with an intention for moving control of external device. To analyze the brain activity, short-time Fourier transform and particle swarm optimization are used to optimal feature selection from the preprocessed EEG signals. In our experiment, we can verify that the power spectral density correspond to range mu-rhythm(${\mu}8$~12Hz) have maximum amplitude among the raw signals and most of particles are concentrated in the corresponding region. Result shows accuracy of subject left hand 40% and right hand 38%.

Correlation of acoustic features and electrophysiological outcomes of stimuli at the level of auditory brainstem (자극음의 음향적 특성과 청각 뇌간에서의 전기생리학적 반응의 상관성)

  • Chun, Hyungi;Han, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.63-73
    • /
    • 2016
  • It is widely acknowledged that the human auditory system is organized tonotopically and people generally listen to sounds as a function of frequency distribution through the auditory system. However, it is still unclear how acoustic features of speech sounds are indicated to the human brain in terms of speech perception. Thus, the purpose of this study is to investigate whether two sounds with similar high-frequency characteristics in the acoustic analysis show similar results at the level of auditory brainstem. Thirty three young adults with normal hearing participated in the study. As stimuli, two Korean monosyllables (i.e., /ja/ and /cha/) and four frequencies of toneburst (i.e., 500, 1000, 2000, and 4000 Hz) were used to elicit the auditory brainstem response (ABR). Measures of monosyllable and toneburst were highly replicable and the wave V of waveform was detectable in all subjects. In the results of Pearson correlation analysis, the /ja/ syllable had a high correlation with 4000 Hz of toneburst which means that its acoustic characteristics (i.e., 3671~5384 Hz) showed the same results in the brainstem. However, the /cha/ syllable had a high correlation with 1000 and 2000 Hz of toneburst although it has acoustical distribution of 3362~5412 Hz. We concluded that there was disagreement between acoustic features and physiology outcomes at the auditory brainstem level. This finding suggests that an acoustical-perceptual mapping study is needed to scrutinize human speech perception.

The Analysis of the P-VEP on the Normal Monocular Vision and Amblyopia in Binocular (앙안에서 정상 단안시와 약시안의 P-VEP 분석)

  • Kim, Douk-Hoon;Kim, Gyu-Su;Sung, A-Young;Park, Won-Hak
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • The aim of the study was performed the wave analysis of P-VEP on the normal monocular vision and amblyopia in binocular. The P-VEP of three channels were recorded by the Nicolet system. Five adults (three males, two females, mean=22 years, range=19 to 24) subjects were recorded The subjects were researched the history including the systemic health, medication, genetics, allergy and ocular disease. Visual acuity and stereopsis were recorded for each subject monocularly and binocularly. Also subjects viewed the P-VEP stimulus both monocularly and binocularly through the corrected visual acuity during the VEP were recorded. The results of study suggest that the visual acuity of binocularly is better than with monocularly and the stereopsis was about over 140 sec. On the other hand, the analysis of P-VEP suggest that the amplitude of wave is larger when the monocular eye receives the P-VEP stimulus compared with the binocular eye. However the amplitude of wave in amblyopia had more smaller than the normal monocular The latency period of P-VEP was similar to results between the normal eye and binocular vision. But the amblyopia was a long period compared with the normal monocular and binocular vision. In conclusion, this study indicated that the visual acuity of binocularly have a better than the normal monocular vision, But in the P-VEP test, the amplitude of wave on normal monocularly vision appears to be better through the binocularly. But the amblyopia appeared the low amplitude wave of P-VEP and decreased the visual acuity.

  • PDF

New Trend of Pain Evaluation by Brain Imaging Devices (뇌기능 영상장치를 이용한 통증의 평가)

  • Lee Sung-Jin;Bai Sun-Joon
    • Science of Emotion and Sensibility
    • /
    • v.8 no.4
    • /
    • pp.365-374
    • /
    • 2005
  • Pain has at least two dimensions such as somatosensory qualities and affect and patients are frequently asked to score the intensity of their pain on a numerical pain rating scale. However, the use of a undimensional scale is questionable in view of the belief, overwhelmingly supported by clinical experience as well as by empirical evidence from multidimensional scaling and other sources, that pain has multidimensions such as sensory-discrimitive, motivational-affective and cognitive-evaluative The study of pain has recently received much attention, especially in understanding its neurophysiology by using new brain imaging techniques, such as positron emission tomography(PET) and functional magnetic resonance imaging (fMRI), both of which allow us to visualize brain function in vivo. Also the new brainimaging devices allow us to evaluate the patients pain status and plan To treat patients objectively. Base4 on our findings we presented what are the new brain imaging devices and the results of study by using brain imaging devices.

  • PDF

The Regulation Mechanisms of Kinesin Motor Proteins (Kinesin 모터 단백질의 조절 기전)

  • Park, Sang Jun;Seog, Joung-Su;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.27 no.7
    • /
    • pp.840-848
    • /
    • 2017
  • Proper intracellular transport is essential for normal cell function. Intracellular transport is mediated by microtubule-dependent molecular motor proteins, as well as kinesin and cytoplasmic dynein, which move their cargo along long, microtubule tracks in cells. Kinesins are ATP-dependent plus-end-directed motor proteins in the intracellular transport of organelles, vesicles, RNA complexes, and protein complexes. The mislocalization of these different types of cargo has been linked to cell dysfunction and degeneration. The cargo transport of kinesins can be described by the following steps: binding to the appropriate cargo and/or adaptor proteins, activation of the kinesin's motility and movement along the microtubule, and the release of the cargo at the correct destination. Recently, several studies have revealed the mechanisms for the regulation of kinesin motor activity, including cargo loading and unloading. Intracellular cargo transport is also modulated by adaptor proteins, which link the kinesins to their cargo. The regulatory proteins, which include protein kinases and phosphatases, regulate kinesin motor activity directly through the phosphorylation or dephosphorylation of kinesins and indirectly through the modification of adaptor proteins, such as c-Jun NH-terminal kinase-interacting proteins, or of the microtubule network. These findings lay the groundwork for understanding how kinesins are differentially engaged in intracellular cargo transport. In addition, understanding the regulatory mechanisms of each kinesin is an area of key interest within cell biology and neurophysiology. In this study, we reviewed kinesins' regulation proteins and discuss how their regulation affects cargo recognition and transport.

Development of Intelligent Learning Tool based on Human eyeball Movement Analysis for Improving Foreign Language Competence (외국어 능력 향상을 위한 사용자 안구운동 분석 기반의 지능형 학습도구 개발)

  • Shin, Jihye;Jang, Young-Min;Kim, Sangwook;Mallipeddi, Rammohan;Bae, Jungok;Choi, Sungmook;Lee, Minho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.153-161
    • /
    • 2013
  • Recently, there has been a tremendous increase in the availability of educational materials for foreign language learning. As part of this trend, there has been an increase in the amount of electronically mediated materials available. However, conventional educational contents developed using computer technology has provided typically one-way information, which is not the most helpful thing for users. Providing the user's convenience requires additional off-line analysis for diagnosing an individual user's learning. To improve the user's comprehension of texts written in a foreign language, we propose an intelligent learning tool based on the analysis of the user's eyeball movements, which is able to diagnose and improve foreign language reading ability by providing necessary supplementary aid just when it is needed. To determine the user's learning state, we correlate their eye movements with findings from research in cognitive psychology and neurophysiology. Based on this, the learning tool can distinguish whether users know or do not know words when they are reading foreign language sentences. If the learning tool judges a word to be unknown, it immediately provides the student with the meaning of the word by extracting it from an on-line dictionary. The proposed model provides a tool which empowers independent learning and makes access to the meanings of unknown words automatic. In this way, it can enhance a user's reading achievement as well as satisfaction with text comprehension in a foreign language.