• 제목/요약/키워드: Neurophysiological origin

검색결과 4건 처리시간 0.018초

Finite-difference Time-domain Study on Birefringence Changes of the Axon During Neural Activation

  • Lee, Jong-Hwan;Kim, Sung-June
    • Journal of the Optical Society of Korea
    • /
    • 제13권2호
    • /
    • pp.272-278
    • /
    • 2009
  • Recently, there has been a growing interest in optical imaging of neural activity because the optical neuroimaging has considerable advantages over conventional imaging. Birefringence of the axon has been reported to change during neural activation, but the neurophysiological origin of the change is still unresolved. This study hypothesizes that the birefringence signal is at least partially attributed to the transient cellular volume change associated with nerve excitation. To examine this hypothesis, we investigated how the intensity of cross-polarized light transmitting through the axon would change as the size of the axon changes. For this purpose, a two-dimensional finite-difference time-domain program was developed with the improvement of the total-field/scattered-field method which reduces numerical noise. The results support our hypothesis in that the computed cross-polarized signals exhibit some agreement with previously-reported birefringence signals.

Nociplastic pain

  • Jeong Hee Cho
    • Annals of Clinical Neurophysiology
    • /
    • 제25권2호
    • /
    • pp.78-83
    • /
    • 2023
  • Nociplastic pain refers to pain arising from altered nociception without evidence of tissue or somatosensory damage. It encompasses various clinical conditions with shared neurophysiological mechanisms involving different organ systems. Nociplastic pain can occur independently or alongside chronic pain conditions with a nociceptive or neuropathic origin. This review introduces the concept of nociplastic pain, its clinical manifestations and the underlying pathophysiology. Taking a biopsychosocial approach can lead to a better understanding of nociplastic pain and improved treatment outcomes for affected individuals.

기계적 자극에 대한 휴지기를 포함한 교근의 근전도 신호 모델링 (Masseteric EMG Signal Modeling Including Silent Period After Mechanical Stimulation)

  • 김덕영;이상훈;이승우;김성환
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권11호
    • /
    • pp.541-549
    • /
    • 2001
  • The term 'silent period(SP)' refers to a transitory, relative or absolute decrease electromyography(EMG) activity, evoked in the midst of an otherwise sustained contraction. Masseteric SP is elicited by a tap on the chin during isometric contraction of masseter muscle. In this paper, a new EMG signal generation model including SP in masseter muscle is proposed. This work is based on the anatomical structure of trigeminal nerve system that related on temporomandibular joint(TMJ) dysfunction. And it was verified by comparing the real EMG signals including SP in masseter muscle to the simulated signals by the proposed model. Through this studies, it was shown that SP has relation to variable neurophysiological phenomena. A proposed model is based on the control system theory and DSP(Digital Signal Processing) theory, and was simulated using MATLAB simulink. As a result, the proposed SP model generated EMG signals which are similar to real EMG signal including normal SP and an abnormal extended SP. This model can be applied to the diagnosis of TMJ dysfunction and can effectively explain the origin of extended SP.

  • PDF

Analysis According to Characteristics of 18 Cases of Brachial Plexus Tumors : A Review of Surgical Treatment Experience

  • Jung, In-Ho;Yoon, Kyeong-Wook;Kim, Young-Jin;Lee, Sang Koo
    • Journal of Korean Neurosurgical Society
    • /
    • 제61권5호
    • /
    • pp.625-632
    • /
    • 2018
  • Objective : Because the anatomical structure of the brachial plexus is very complex, surgical treatment of tumors in this region is challenging. Therefore, a lot of clinical and surgical experience is required for successful treatment; however, many neurosurgeons have difficulty accumulating this experience owing to the rarity of brachial plexus tumors. The purpose of this report is to share our surgical experience with brachial plexus tumor with other neurosurgeons. Methods : The records of 18 consecutive patients with brachial plexus tumors who underwent surgical treatment between January 2010 and December 2017 in a single institution were retrospectively reviewed. The surgical approach was determined according to the tumor location and size, and intraoperative neurophysiological monitoring (IONM) was used in most of cases to prevent iatrogenic nerve injury during surgery. In addition, to evaluate the differences in tumor characteristics according to pathologic diagnosis, the tumors were divided twice into two groups, based on two separate classifications, and statistical analysis was performed. Results : The 18 brachial plexus tumors comprised 15 (83.3%) benign peripheral nerve sheath tumors including schwannoma and neurofibroma, one (5.6%) malignant peripheral nerve sheath tumor, one (5.6%) benign tumor of non-neural sheath origin (neurogenic cyst), and one (5.6%) metastatic tumor (papillary carcinoma). The authors analyzed relationship between tumor size/location and tumor characteristic parameters such as age, size, right-left, and pathology. There were no statistically significant differences except a tendency of bigger tumor size in young age. Conclusion : For a successful surgical outcome, an appropriate surgical approach is essential, and the appropriate surgical approach is determined by the location and size of the tumor. Furthermore, applying IONM may prevent postoperative complications and it is favorable option for brachial plexus tumors surgery.