• 제목/요약/키워드: Neuronal marker

검색결과 80건 처리시간 0.022초

Transforming Growth Factor-β-Induced RBFOX3 Inhibition Promotes Epithelial-Mesenchymal Transition of Lung Cancer Cells

  • Kim, Yong-Eun;Kim, Jong Ok;Park, Ki-Sun;Won, Minho;Kim, Kyoon Eon;Kim, Kee K.
    • Molecules and Cells
    • /
    • 제39권8호
    • /
    • pp.625-630
    • /
    • 2016
  • The RNA-binding protein Rbfox3 is a well-known splicing regulator that is used as a marker for post-mitotic neurons in various vertebrate species. Although recent studies indicate a variable expression of Rbfox3 in non-neuronal tissues, including lung tissue, its cellular function in lung cancer remains largely unknown. Here, we report that the number of RBFOX3-positive cells in tumorous lung tissue is lower than that in normal lung tissue. As the transforming growth factor-${\beta}$ (TGF-${\beta}$) signaling pathway is important in cancer progression, we investigated its role in RBFOX3 expression in A549 lung adenocarcinoma cells. TGF-${\beta}1$ treatment inhibited RBFOX3 expression at the transcriptional level. Further, RBFOX3 depletion led to a change in the expression levels of a subset of proteins related to epithelial-mesenchymal transition (EMT), such as E-cadherin and Claudin-1, during TGF-${\beta}1$-induced EMT. In immunofluorescence microscopic analysis, mesenchymal morphology was more prominent in RBFOX3-depleted cells than in control cells. These findings show that TGF-${\beta}$-induced RBFOX3 inhibition plays an important role in EMT and propose a novel role for RBFOX3 in cancer progression.

Effects of amygdalin on the functional recovery and c-Fos expression in the ventrolateral periaqueductal gray region after sciatic crushed nerve injury in rats

  • Kim, Toung-Wook;Lim, Hyung-Ho;Song, Yun-Kyung;Kim, Sung-Eun;Lee, Jin-Woo;Lee, Myoung-Hwa;Seo, Jin-Hee;Shin, Mal-Soon;Lim, Baek-Vin;Kim, Chang-Ju
    • Advances in Traditional Medicine
    • /
    • 제7권5호
    • /
    • pp.556-563
    • /
    • 2008
  • Peripheral nerve injuries are a commonly encountered clinical problem and often result in a chronic pain and severe functional deficits. The expression of c-Fos is sometimes used as a marker of increased neuronal activity. We have prepared the aqueous extract of amygdalin from Armeniacae semen for pain control. In the present study, we investigated the effects of amygdalin on the recovery rate of the locomotor function and on the expression of c-Fos in the ventrolateral periaqueductal gray (vlPAG) region following sciatic crushed nerve injury in rats. Walking track analysis for the evaluation of functional recovery and immunohistochemistry for the c-Fos expression were used in this study. In the present results, characteristic gait change with dropping of the sciatic function index (SFI) was observed and c-Fos expression in the vlPAG was suppressed following sciatic crushed nerve injury in rats. Amygdalin enhanced SFI value and restored c-Fos expression in the vlPAG to the control value. The present our study indicated that amygdalin activates neurons in the vlPAG, and it facilitates functional recovery following peripheral nerve injury.

Ethanol Induces Cell Death by Activating Caspase-3 in the Rat Cerebral Cortex

  • Han, Jae Yoon;Joo, Yeon;Kim, Yoon Sook;Lee, Young Ki;Kim, Hyun Joon;Cho, Gyeong Jae;Choi, Wan Sung;Kang, Sang Soo
    • Molecules and Cells
    • /
    • 제20권2호
    • /
    • pp.189-195
    • /
    • 2005
  • Ethanol has long been implicated in triggering apoptotic neurodegeneration. We examined the effects of ethanol on the rat brain during synaptogenesis when a spurt in brain growth occurs. This period corresponds to the first 2 postnatal weeks in rats and is very sensitive to ethanol exposure. Ethanol was administered subcutaneously to 7-day- postnatal rat pups by a dosing regimen of 3 g/kg at 0 h and again at 2 h. Blood ethanol levels peaked ($677{\pm}16.4mg/dl$) at 4 h after the first ethanol administration. The cerebral cortexes of the ethanol-treated group showed several typical symptoms of apoptosis such as chromosome condensation and disintegration of cell bodies. Activated caspase-3 positive cells were found in the cortex within 2 h of the first injection, and reached a peak at 12 h. In addition, TUNEL staining revealed DNA fragmentation in the same regions. These results demonstrate that acute ethanol administration causes neuronal cell death via a caspase-3-dependent pathway within 24 h, suggesting that activation of caspase-3 is a marker of the developmental neurotoxicity of ethanol.

Increase of NADPH-diaphorase Expression in Hypothalamus of Stat4 Knockout Mice

  • Hong, Mee-Sook;Song, Jeong-Yoon;Yun, Dong-Hwan;Cho, Jeong-Je;Chung, Joo-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권5호
    • /
    • pp.337-341
    • /
    • 2009
  • Signal transducer and activator of transcription 4 (STAT4), a STAT family member, mediates interleukin 12 (IL12) signal transduction. IL12 is known to be related to calorie-restricted status. In the central nervous system, IL12 also enhances the production of nitric oxide (NO), which regulates food intake. In this study, the expression of neuronal NO synthase (Nos1), which is also related to food intake, was investigated in the hypothalamic areas of Stat4 knockout (KO) mice using nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry, a marker for neurons expressing Nos1 enzyme. Western blots were also performed to evaluate Nos1 and Fos expression. Wild-type Balb/c (WT group, n=10 male) and Stat4 KO mice (Stat4 KO group, n=8 male) were used. The body weight and daily food intake in the WT group were $22.4{\pm}0.3$ and 4.4 g per day, while those in the Stat4 KO group were $18.7{\pm}0.4$ and 1.8 g per day, respectively. Stat4 mice had lower body weight and food intake than Balb/c mice. Optical intensities of NADPH-d-positive neurons in the paraventricular nucleus (PVN) and lateral hypothalamic area (LHA) of the Stat4 KO group were significantly higher than those of the WT group. Western blotting analysis revealed that the hypothalamic Nos1 and Fos expression of the Stat4 KO group was up-regulated, compared to that in the WT group. These results suggest that Stat4 may be related to the regulation of food intake and expression of Nosl in the hypothalamus.

Preemptive application of QX-314 attenuates trigeminal neuropathic mechanical allodynia in rats

  • Yoon, Jeong-Ho;Son, Jo-Young;Kim, Min-Ji;Kang, Song-Hee;Ju, Jin-Sook;Bae, Yong-Chul;Ahn, Dong-Kuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권3호
    • /
    • pp.331-341
    • /
    • 2018
  • The aim of the present study was to examine the effects of preemptive analgesia on the development of trigeminal neuropathic pain. For this purpose, mechanical allodynia was evaluated in male Sprague-Dawley rats using chronic constriction injury of the infraorbital nerve (CCI-ION) and perineural application of 2% QX-314 to the infraorbital nerve. CCI-ION produced severe mechanical allodynia, which was maintained until postoperative day (POD) 30. An immediate single application of 2% QX-314 to the infraorbital nerve following CCI-ION significantly reduced neuropathic mechanical allodynia. Immediate double application of QX-314 produced a greater attenuation of mechanical allodynia than a single application of QX-314. Immediate double application of 2% QX-314 reduced the CCI-ION-induced upregulation of GFAP and p-p38 expression in the trigeminal ganglion. The upregulated p-p38 expression was co-localized with NeuN, a neuronal cell marker. We also investigated the role of voltage-gated sodium channels (Navs) in the antinociception produced by preemptive application of QX-314 through analysis of the changes in Nav expression in the trigeminal ganglion following CCI-ION. Preemptive application of QX-314 significantly reduced the upregulation of Nav1.3, 1.7, and 1.9 produced by CCI-ION. These results suggest that long-lasting blockade of the transmission of pain signaling inhibits the development of neuropathic pain through the regulation of Nav isoform expression in the trigeminal ganglion. Importantly, these results provide a potential preemptive therapeutic strategy for the treatment of neuropathic pain after nerve injury.

Differential Diagnosis of Brain Diseases Using In Vivo Proton Magnetic Resonance Spectroscopy at 3 Tesla: A Preliminary Study

  • Shen, Yu-Lan;Kang, Heoung-Keun;Kim, Tae-Hoon;Sundaram, Thirunavukkarasu;Kim, Hyeong-Jung;Jeong, Gwang-Woo
    • 한국자기공명학회논문지
    • /
    • 제13권2호
    • /
    • pp.64-83
    • /
    • 2009
  • The purpose of this study was to evaluate the usefulness of in vivo 3T $^1H$ MRS with short TE for prescreening various brain diseases. Together with ten normal volunteers, 12 brain tumor patients(2 lymphomas, 5 malignant gliomas) and 5(benign meningiomas) and 10 brain ischemic disease patients(6 acute and 4 subacute infarctions) participated. Lymphomas showed increased intensities of Cho and Lac. Likewise, gliomas showed increased Cho and Lac, but with decreased NAA and ${\beta}\;{\gamma}$-Glx; in higher grade of gliomas, Lac, Cho, mI and Lip predominantly increased with decrease of NAA. Benign meningiomas showed increased Cho, Lac and ${\beta}\;{\gamma}$-Glx; with decreased of NAA. The alanine peak at 1.47 ppm is a neuronal marker for meningiomas. Infarctions showed increased Lac and Lip and decreased NAA, ${\alpha}$-Glx and ${\beta}\;{\gamma}$-Glx where Lac increased with decreased of ${\alpha}$-Glx in acute, and Cho, Lac and Lip increased with decrease of NAA in subacute. Elevated Lac and decreased NAA levels were more aggravated in subacute. Clinical application of the $^1H$ MRS with short TE at 3T is able to povide valuable spectral information for prescreening various brain diseases by monitoring the changes of disease-specific cerebral metabolite concentrations in vivo, and consequently, it can be applicable to assessment of differential diagnosis and malignancy as well.

Etoposide Induces Mitochondrial Dysfunction and Cellular Senescence in Primary Cultured Rat Astrocytes

  • Bang, Minji;Kim, Do Gyeong;Gonzales, Edson Luck;Kwon, Kyoung Ja;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • 제27권6호
    • /
    • pp.530-539
    • /
    • 2019
  • Brain aging is an inevitable process characterized by structural and functional changes and is a major risk factor for neurodegenerative diseases. Most brain aging studies are focused on neurons and less on astrocytes which are the most abundant cells in the brain known to be in charge of various functions including the maintenance of brain physical formation, ion homeostasis, and secretion of various extracellular matrix proteins. Altered mitochondrial dynamics, defective mitophagy or mitochondrial damages are causative factors of mitochondrial dysfunction, which is linked to age-related disorders. Etoposide is an anti-cancer reagent which can induce DNA stress and cellular senescence of cancer cell lines. In this study, we investigated whether etoposide induces senescence and functional alterations in cultured rat astrocytes. Senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) activity was used as a cellular senescence marker. The results indicated that etoposide-treated astrocytes showed cellular senescence phenotypes including increased SA-${\beta}$-gal-positive cells number, increased nuclear size and increased senescence-associated secretory phenotypes (SASP) such as IL-6. We also observed a decreased expression of cell cycle markers, including PhosphoHistone H3/Histone H3 and CDK2, and dysregulation of cellular functions based on wound-healing, neuronal protection, and phagocytosis assays. Finally, mitochondrial dysfunction was noted through the determination of mitochondrial membrane potential using tetramethylrhodamine methyl ester (TMRM) and the measurement of mitochondrial oxygen consumption rate (OCR). These data suggest that etoposide can induce cellular senescence and mitochondrial dysfunction in astrocytes which may have implications in brain aging and neurodegenerative conditions.

Dual Cytotoxic Responses Induced by Treatment of A549 Human Lung Cancer Cells with Sweet Bee Venom in a Dose-Dependent Manner

  • Yu-Na Hwang;In-Seo Kwon;Han-Heom Na;Jin-Sung Park;Keun-Cheol Kim
    • 대한약침학회지
    • /
    • 제25권4호
    • /
    • pp.390-395
    • /
    • 2022
  • Objectives: Sweet bee venom (sBV) is purified from Apis mellifera, containing a high level of melittin-its main component. It has been used as a therapeutic agent for pain relief and anti-inflammation, as well as for treating neuronal abnormalities. Recently, there have been studies on the therapeutic application of sBV for anticancer treatment. In the present study, we investigated the pharmacological effect of sBV treatment in A549 human lung cancer cells. Methods: We used microscopic analysis to observe the morphological changes in A549 cells after sBV treatment. The MTT assay was used to examine the cytotoxic effect after dose-dependent sBV treatment. Molecular changes in sBV were evaluated by the expression of apoptosis marker proteins using western blot analysis. Results: Microscopic analysis suggested that the growth inhibitory effect occurred in a dose-dependent manner; however, cell lysis occurred at a concentration over 20 ㎍/mL of sBV. The MTT assay indicated that sBV treatment exhibited a growth inhibitory effect at a concentration over 5 ㎍/mL. On fluorescence activated cell sorting analysis, G0 dead cells were observed after G1 arrest at treatment concentrations up to 10 ㎍/mL. However, rapid cell rupture was observed at a concentration of 20 ㎍/mL. Western blot analysis demonstrated that sBV treatment modulated the expression of multiple cell death-related proteins, including cleaved-PARP, cleaved-caspase 9, p53, Bcl2, and Bax. Conclusion: sBV induced cell death in A549 human lung cancer cells at a pharmacological concentration, albeit causing hemolytic cell death at a high concentration.

Effect of Synthetic CaM and NFAT Oligodeoxynucleotide on MPP+-Stimulated Mesencephalic Neurons

  • Jihyun Park;Kyung Mi Jang
    • Journal of Interdisciplinary Genomics
    • /
    • 제5권2호
    • /
    • pp.35-41
    • /
    • 2023
  • Background: Ca2+ signaling plays a vital role in neuronal signaling and altered Ca2+ homeostasis in Parkinson's disease (PD). Overexpression of αSYN significantly promote the Ca2+-Calmodulin (CaM) activity and subsequent nuclear translocation of nuclear factor of activated T cells (NFAT) transcription factor in dopaminergic neurons of midbrain. However, the exact role of Ca2+-CaM and NFAT in PD pathology is yet to be elucidated. Methods: We designed the CaM-NFAT-oligodeoxynucleotide (ODN), a synthetic short DNA containing complementary sequence for NFAT transcription factor and CaM mRNA. Then, the effect of CaM-NFAT-ODN on 1-methyl-4-phenylpyridinium (MPP+)-mediated neurotoxicity was investigated in mimic PD model in vitro. Results: First, the expression of αSYN and CaM was strongly increased in substantia nigra (SN) of PD and the expression of tyrosine hydroxylase (TH) was strongly increased in control SN. Additionally, the expression of apoptosis marker proteins was strongly increased in SN of PD. Transfection of CaM-NFAT-ODN repressed CaM and pNFAT, the target genes of this ODN in rat embryo primary mesencephalic neurons. It also reduced ERK phosphorylation, a downstream target of these genes. These results demonstrated that CaM-NFAT-ODN operated successfully in rat embryo primary mesencephalic neurons. Transfection of CaM-NFAT-ODN repressed TH reduction, αSYN accumulation, and apoptosis by MPP+-induced neurotoxicity response through Ca2+ signaling and mitogen-activated protein kinases (MAPK) signaling. Conclusion: Synthetic CaM-NFAT-ODN has substantial therapeutic feasibility for the treatment of neurodegenerative diseases.

치아이동에 의한 백서 삼차신경감각핵군내 c-Fos의 발현 (C-FOS EXPRESS10N IN THE RAT TRIGEMINAL SENSORY NUCLEUS COMPLEX FOLLOWING TOOTH MOVEMENT)

  • 민경호;박효상;배용철;성재현
    • 대한치과교정학회지
    • /
    • 제28권3호
    • /
    • pp.441-452
    • /
    • 1998
  • 이 연구의 목적은 말초조직에 유해 자극을 가하였을 때 중추 신경계내 이차 신경 세포체내에 발현되어 neuronal marker로 사용되고 있는 c-fos를 사용한 면역 조직화학법으로 치아이동시 동반되는 동통의 투사경로의 이해에 도움을 주고자하는 것이다. 생후 9주령의 210gm내외의 Sprague-Dawley계 웅성 백서 21마리를 교정력을 가하지않고 마취만을 시행한 정상 대조군과 교정력 적용 시간 경과에 따라 1시간, 3시간, 6시간, 12시간, 1일, 3일군으로 나누어 각 해당 시간동안 상악 우측 제1 대구치와 상악 우측 측절치사이에 Ni-Ti coil spring를 결찰하여 30gm내외의 지속적인 교정력을 가한 후 희생시켰다. 희생시킨 백서의 뇌간을 적출하여 토끼의 항체를 이용하여 면역화학 염색을 시행하였다. 삼차신경 감각핵군내 부위에 따른 c-fos 면역 반응 세포를 측정하여 교정력 적용 시간 경과에 따른 변화를 관찰하였다. $\cdot$c-fos면역 반응 세포의 배측에서의 분포는 자극측 중위핵과 미측핵의 이행부위에서 시작하여 제1경추 척수 후각에 까지 이어졌는데 가장 많은 분포를 보인 곳은 미측핵의 문측 부위였다. 그리고 주로 I층 과 II층에서 관찰되었다. $\cdot$복측에서의 c-fos면역 반응 세포의 분포는 자극측 중위핵의 미측 부위에서 시작하여 미측핵의 중간부위에 까지 이어졌다. $\cdot$교정력 적용3, 6시간군에서 c-fos면역 반응 세포가 가장 많이 관찰 되었으며 12시간군에서 감소되기 시작하여 1일, 3일군에서는 현저히 감소 하였다. 위로 미루어 볼때 지속적인 교정력에 의한 동통은 중위핵과 미측핵의 이행부위, 미측핵, 제 1경추 척수후각에서 매개되는 것으로 생각된다.

  • PDF