• Title/Summary/Keyword: Neuronal circuit

Search Result 26, Processing Time 0.023 seconds

Network of hypothalamic neurons that control appetite

  • Sohn, Jong-Woo
    • BMB Reports
    • /
    • v.48 no.4
    • /
    • pp.229-233
    • /
    • 2015
  • The central nervous system (CNS) controls food intake and energy expenditure via tight coordinations between multiple neuronal populations. Specifically, two distinct neuronal populations exist in the arcuate nucleus of hypothalamus (ARH): the anorexigenic (appetite-suppressing) pro-opiomelanocortin (POMC) neurons and the orexigenic (appetite-increasing) neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons. The coordinated regulation of neuronal circuit involving these neurons is essential in properly maintaining energy balance, and any disturbance therein may result in hyperphagia/obesity or hypophagia/starvation. Thus, adequate knowledge of the POMC and NPY/AgRP neuron physiology is mandatory to understand the pathophysiology of obesity and related metabolic diseases. This review will discuss the history and recent updates on the POMC and NPY/AgRP neuronal circuits, as well as the general anorexigenic and orexigenic circuits in the CNS. [BMB Reports 2015; 48(4): 229-233]

A study of the electrical neuronal model (신경세포의 전기적 모델화)

  • 박상희;이명호
    • 전기의세계
    • /
    • v.24 no.6
    • /
    • pp.97-101
    • /
    • 1975
  • The electrical neuronal model described in this paper simulates the most important functional properties of nerve cells. An model circuit incorporating many of the digital and analog properties of neurons is described. Having such properties as variable threshold level, action potential, summation, all-or-none output, absolute and relative refract oriness, and ingibition, it exhibits a considerable amount of functional equivalence to biological structures. This electrical neuronal model has utility not only for studying single unit properties but also for investigating group interactions. Such studies may be relevent to elucidation of neuronal network behavior.

  • PDF

Spontaneous Firing Characteristics of Cardiovascular Neurons in the Rostral Ventrolateral Medulla During Somatosympathetic Reflex : II. Minimal Neuronal Model (상부복외측 연수 심혈관계 세포의 체성교감반사시 자발적 흥분발사특성 분석 : I. 실험적 연구)

  • 차은종;구용숙;이태수
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.71-80
    • /
    • 1996
  • A number of experimental evidences suggest that the rnun ventrolateral medulla(RVLM) is the final common pathway in the regulation of arterial blood pressure. A Voup of neurons in the RVLM, called the cardiovascular neurons (UN), show spontaneous activity temporally synchronized with the periodic cardiac cycle. These neurons affect the sympathetic nerve discharge(SND), thus are believed to be responsible for blood pressure control. The present experiment identified 98 UVNs in 42 cats based on the temporal relationships between each neuron's activity with both the cardiac cycle and SWD. In 20 UWL changes of spontaneous firing rate(FR) during the somatosympathetic reflex(SSR) were studied Five different firing patterns were observed during the pressor and depressor responses of SSR, implying that they form an interconnected neuronal circuit interacting with one another to generate efferent signals for blood pressure regulation. In the following companion paper, the firing patterns of CVN are analyzed to develop a minimal neuronal circuit model explaining the present experimental outcome.

  • PDF

Spontaneous Firing Characteristics of Cardiovascular Neurons in the Rostral Ventrolateral Medulla during Somatosympathetic Reflex . 11. Minimal Neuronal Model (상부복외측 연수 심혈관계 세포의 체성교감 반사시 자발적 흥분발사특성 분석 :II. 최소 세포망 모델)

  • Goo, Yong-Sook;No, Jin-A;Cha, Eun-Jong
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.79-84
    • /
    • 1996
  • A number of experimental evidences suggest that the rnun ventrolateral medulla(RVLM) is the final common pathway in the regulation of arterial blood pressure. A Voup of neurons in the RVLM, called the cardiovascular neurons (UN), show spontaneous activity temporally synchronized with the periodic cardiac cycle. These neurons affect the sympathetic nerve discharge(SND), thus are believed to be responsible for blood pressure control. The present experiment identified 98 UVNs in 42 cats based on the temporal relationships between each neuron's activity with both the cardiac cycle and SWD. In 20 UWL changes of spontaneous firing rate(FR) during the somatosympathetic reflex(SSR) were studied Five different firing patterns were observed during the pressor and depressor responses of SSR, implying that they form an interconnected neuronal circuit interacting with one another to generate efferent signals for blood pressure regulation. In the following companion paper, the firing patterns of CVN are analyzed to develop a minimal neuronal circuit model explaining the present experimental outcome.

  • PDF

Reconstruction of Neural Circuits Using Serial Block-Face Scanning Electron Microscopy

  • Kim, Gyu Hyun;Lee, Sang-Hoon;Lee, Kea Joo
    • Applied Microscopy
    • /
    • v.46 no.2
    • /
    • pp.100-104
    • /
    • 2016
  • Electron microscopy is currently the only available technique with a spatial resolution sufficient to identify fine neuronal processes and synaptic structures in densely packed neuropil. For large-scale volume reconstruction of neuronal connectivity, serial block-face scanning electron microscopy allows us to acquire thousands of serial images in an automated fashion and reconstruct neural circuits faster by reducing the alignment task. Here we introduce the whole reconstruction procedure of synaptic network in the rat hippocampal CA1 area and discuss technical issues to be resolved for improving image quality and segmentation. Compared to the serial section transmission electron microscopy, serial block-face scanning electron microscopy produced much reliable three-dimensional data sets and accelerated reconstruction by reducing the need of alignment and distortion adjustment. This approach will generate invaluable information on organizational features of our connectomes as well as diverse neurological disorders caused by synaptic impairments.

Development of muscle sensory neurons and monosynaptic stretch reflex circuit (근육 감각 신경과 단일연접 신전반사 회로의 발달)

  • Kim, Sik-Hyun
    • PNF and Movement
    • /
    • v.5 no.1
    • /
    • pp.57-66
    • /
    • 2007
  • This review discusses the development of muscle receptors, in particular, that of muscle sensory neurons and monosynaptic stretch reflex circuit. The development of muscle sensory neurons and monosynaptic stretch reflex requires a series of steps including expression of neurotrophic transcriptional factors and their receptor. The monosynaptic stretch reflex circuit is unique neuronal circuit system, and highly precise synaptic connection systems. Thus, coordination of sensory-motor function in muscle receptors depend on the expression of distinct classes of molecular cues, and on the formation of selective synaptic connections between sensory-motor neurons and their target muscle. Recent neurotrophic and transcription factor expression studies have expanded our knowledge on how muscle sensory neuron is formed, and how sensory-motor system is developed.

  • PDF

Nano-Resolution Connectomics Using Large-Volume Electron Microscopy

  • Kim, Gyu Hyun;Gim, Ja Won;Lee, Kea Joo
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.171-175
    • /
    • 2016
  • A distinctive neuronal network in the brain is believed to make us unique individuals. Electron microscopy is a valuable tool for examining ultrastructural characteristics of neurons, synapses, and subcellular organelles. A recent technological breakthrough in volume electron microscopy allows large-scale circuit reconstruction of the nervous system with unprecedented detail. Serial-section electron microscopy-previously the domain of specialists-became automated with the advent of innovative systems such as the focused ion beam and serial block-face scanning electron microscopes and the automated tape-collecting ultramicrotome. Further advances in microscopic design and instrumentation are also available, which allow the reconstruction of unprecedentedly large volumes of brain tissue at high speed. The recent introduction of correlative light and electron microscopy will help to identify specific neural circuits associated with behavioral characteristics and revolutionize our understanding of how the brain works.

Ultrastructural Localization of GABAergic Neuronal Components in the Dog Basilar Pons (개의 교핵내 GABA성 신경세포 성분의 미세구조적 위치관찰)

  • Lee, Hyun-Sook
    • Applied Microscopy
    • /
    • v.25 no.1
    • /
    • pp.65-74
    • /
    • 1995
  • An immunocytochemical study of GABA-positive neuronal elements was performed at the electron microscopic level to examine subcellular distribution of the inhibitory neurotransmitter in the dog basilar pons. Electron-dense reaction product was observed in neuronal somata and dendritic processes. One or more unlabeled axon terminals made asymmetric synaptic contacts with these GABAergic somatic and dendritic profiles. A large number of GABA-positive axon terminals were also observed. They made symmetric as well as asymmetric synaptic contacts with unlabeled dendritic profiles. In axo-axonic synapses, postsynaptic axon-like processes were consistently GABA-immunoreactive. These observations suggest that the inhibitory local circuit neurons in the dog basilar pons play a major role in cerebro-ponto-cerebellar circuitry by integrating various afferent inputs and conveying them into the cerebellar cortex and the deep cerebellar nuclei.

  • PDF

Vertically-Aligned Nanowire Arrays for Cellular Interfaces

  • Kim, Seong-Min;Lee, Se-Yeong;Gang, Dong-Hui;Yun, Myeong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.90.2-90.2
    • /
    • 2013
  • Vertically-aligned silicon nanostructure arrays (SNAs) have been drawing much attention due to their useful electrical properties, large surface area, and quantum confinement effect. SNAs are typically fabricated by chemical vapor deposition, reactive ion etching, or wet chemical etching. Recently, metal-assisted chemical etching process, which is relatively simple and cost-effective, in combination with nanosphere lithography was recently demonstrated for vertical SNA fabrication with controlled SNA diameters, lengths, and densities. However, this method exhibits limitations in terms of large-area preparation of unperiodic nanostructures and SNA geometry tuning independent of inter-structure separation. In this work, we introduced the layerby- layer deposition of polyelectrolytes for holding uniformly dispersed polystyrene beads as mask and demonstrated the fabrication of well-dispersed vertical SNAs with controlled geometric parameters on large substrates. Additionally, we present a new means of building in vitro neuronal networks using vertical nanowire arrays. Primary culture of rat hippocampal neurons were deposited on the bare and conducting polymer-coated SNAs and maintained for several weeks while their viability remains for several weeks. Combined with the recently-developed transfection method via nanowire internalization, the patterned vertical nanostructures will contribute to understanding how synaptic connectivity and site-specific perturbation will affect global neuronal network function in an extant in vitro neuronal circuit.

  • PDF

Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors

  • Oh, Jihae;Lee, Chiwoo;Kaang, Bong-Kiun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.4
    • /
    • pp.237-249
    • /
    • 2019
  • Confirming the direct link between neural circuit activity and animal behavior has been a principal aim of neuroscience. The genetically encoded calcium indicator (GECI), which binds to calcium ions and emits fluorescence visualizing intracellular calcium concentration, enables detection of in vivo neuronal firing activity. Various GECIs have been developed and can be chosen for diverse purposes. These GECI-based signals can be acquired by several tools including two-photon microscopy and microendoscopy for precise or wide imaging at cellular to synaptic levels. In addition, the images from GECI signals can be analyzed with open source codes including constrained non-negative matrix factorization for endoscopy data (CNMF_E) and miniscope 1-photon-based calcium imaging signal extraction pipeline (MIN1PIPE), and considering parameters of the imaged brain regions (e.g., diameter or shape of soma or the resolution of recorded images), the real-time activity of each cell can be acquired and linked with animal behaviors. As a result, GECI signal analysis can be a powerful tool for revealing the functions of neuronal circuits related to specific behaviors.