• Title/Summary/Keyword: Neuronal

Search Result 2,026, Processing Time 0.029 seconds

Selective Suppression of a Subset of Bax-dependent Neuronal Death by a Cell Permeable Peptide Inhibitor of Bax, BIP

  • Kim, Soo-Young;Kim, Hyun;Sun, Woong
    • Animal cells and systems
    • /
    • v.12 no.4
    • /
    • pp.211-217
    • /
    • 2008
  • Bax, a pro-apoptotic member of Bcl-2 family proteins, plays a central role in the mitochondria-dependent apoptosis. Apoptotic signals induce the translocation of Bax from cytosol into the mitochondria, which triggers the release of apoptogenic molecules such as cytochrome C and apoptosis-inducing factor, AIF. Bax-inhibiting peptide(BIP) is a cell permeable peptide comprised of five amino acids designed from the Bax-interaction domain of Ku70. Because BIP inhibits Bax translocation and Bax-mediated release of cytochrome C, BIP suppresses Bax-dependent apoptosis. In this study, we observed that BIP inhibited staurosporine-induced neuronal death in cultured cerebral cortex and cerebellar granule cells, but BIP failed to rescue granule cells from trophic signal deprivation-induced neuronal death, although both staurosporine-induced and trophic signal deprivation-induced neuronal death are dependent on Bax. These findings suggest that the mechanisms of the Bax activation may differ depending on the type of cell death induction, and thus BIP exhibits selective suppression of a subtype of Bax-dependent neuronal death.

Phytochemicals That Act on Synaptic Plasticity as Potential Prophylaxis against Stress-Induced Depressive Disorder

  • Soojung, Yoon;Hamid, Iqbal;Sun Mi, Kim;Mirim, Jin
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.148-160
    • /
    • 2023
  • Depression is a neuropsychiatric disorder associated with persistent stress and disruption of neuronal function. Persistent stress causes neuronal atrophy, including loss of synapses and reduced size of the hippocampus and prefrontal cortex. These alterations are associated with neural dysfunction, including mood disturbances, cognitive impairment, and behavioral changes. Synaptic plasticity is the fundamental function of neural networks in response to various stimuli and acts by reorganizing neuronal structure, function, and connections from the molecular to the behavioral level. In this review, we describe the alterations in synaptic plasticity as underlying pathological mechanisms for depression in animal models and humans. We further elaborate on the significance of phytochemicals as bioactive agents that can positively modulate stress-induced, aberrant synaptic activity. Bioactive agents, including flavonoids, terpenes, saponins, and lignans, have been reported to upregulate brain-derived neurotrophic factor expression and release, suppress neuronal loss, and activate the relevant signaling pathways, including TrkB, ERK, Akt, and mTOR pathways, resulting in increased spine maturation and synaptic numbers in the neuronal cells and in the brains of stressed animals. In clinical trials, phytochemical usage is regarded as safe and well-tolerated for suppressing stress-related parameters in patients with depression. Thus, intake of phytochemicals with safe and active effects on synaptic plasticity may be a strategy for preventing neuronal damage and alleviating depression in a stressful life.

Protective Effect of Carnosine Against Zn-Mediated Toxicity in Cortical Neuronal Cells

  • Hue, Jin-Joo;Lee, Ah-Ram;Lee, Yea-Eun;Cho, Min-Hang;Lee, Ki-Nam;Nam, Sang-Yoon;Yun, Young-Won;Jeong, Jae-Hwang;Lee, Sang-Hwa;Lee, Beom-Jun
    • Toxicological Research
    • /
    • v.23 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • Zinc is an endogenous transition metal that can be synaptically released during neuronal activity. However, zinc may contribute to the neuropathology associated with a variety of conditions. Carnosine expressed in glial cells can modulate the effects of zinc on neuronal excitability as a zinc chelator. We hypothesize that carnosine may protect against neurotoxicity of zinc in cortical neuronal cells. The cortical neuronal cells from newborn rats were prepared and exposed to zinc chloride and/or carnosine at various concentrations. Zinc at the doses of 0 to $500{\mu}M$ decreased neuronal cell viability in a dose-dependent manner. Additionally, at the concentrations of 100 and $200{\mu}M$, it significantly decreased cell viability in an exposed time-dependent manner (p < 0.05). Treatment with carnosine at the concentrations of 20 and $200{\mu}M$ significantly increased neuronal cell proliferation by approximately 14% and 20%, respectively, compared to the control (p < 0.05). At the concentrations of 100 and $200{\mu}M$ zinc, $20{\mu}M$ carnosine significantly increased the viability of neuronal cells by 18.3% and 12.1 %, and $200{\mu}M$ carnosine also increased it by 33.5% and 28.6%, respectively, compared to the normal control group (p < 0.01). These results suggest that carnosine at a physiologically relevant level may protect against zinc-mediated toxicity in neuronal cells as an endogenous neuroprotective agent.

The Effect of Goomcheongsim-won(구미청심원) Extracts on E20 Corticells and P7 Cerebellar Cells Exposed to Hypoxia (구미청심원이 저산소증 유발 배양신경세포에 미치는 영향)

  • 한기선;정승현;신길조;문일수;이원철
    • The Journal of Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.120-132
    • /
    • 2002
  • Objectives : The purpose of this investigation was to evaluate the effect of Goomicheongsim-won Extracts on E20 corticells and P7 cerebellar cells exposed to hypoxia, and the effect on neuronal protection by elimination of Rhinoceros unicornis L. and/or Orpiment $As_2S_3$. Methods : P7 cerebellar cells were grown in various concentrations of KM-A, KM-B, KM- C and KM-D. On 7 DIV (day in vitro), cells were exposed to hypoxia (98% $N_2/5%{;}CO_2,{\;}3{\;}hr,{\;}37^{\circ}C$) and normoxia, and then further incubated for 3 days. Neuronal viabilities were expressed as percentages of control. E20 cortical cells were grown in various concentrations of KM-A, KM-B, KM-C, and KM-D. On 7 DIV, cells were exposed to hypoxia and normoxia, and then further incubated for 3 and 7 days. Results : I. The effect of KM-A on neuronal protection was significantly increased P7 cerebellar granule cells and E20 cortical cells on normoxia and hypoxia. 2. The effect of KM-B on neuronal protection was increased P7 cerebellar granule cells on normoxia, but was significantly decreased P7 cerebellar granule cells on hypoxia. The effect of KM-B on neuronal protection was non-significantly increased E20 cortical cells on normoxia and hypoxia. 3. The effect of KM-C on neuronal protection was non-significantly increased P7 cerebellar granule cells on normoxia and hypoxia and was decreased (p=0.058) on hyperconcentration of the extracts in normoxia. The effect of KM-C on neuronal protection was significantly increased P7 cerebellar granule cells and E20 cortical cells on normoxia and hypoxia (10 DIV), and the effect was E20 cortical cells on normoxia (14 DIV), non-significantly increased E20 cortical cells on hypoxia (14DIV). 4. The effect of KM-D on neuronal protection was increased P7 cerebellar granule cells on normoxia but was not on hyperconcentration of the extracts, was significantly decreased on hyperconcentration of the extracts in hypoxia. The effect of KM-D on neuronal protection was significantly increased E20 cortical cells on normoxia and was significantly increased E20 cortical cells increased on hypoxia (10 DIV). Conclusions : Goomicheongsim-won extracts had applicable effect on E20 corticells and P7 cerebellar cells exposed to hypoxia. The effect on neuronal protection by elimination of Rhinoceros unicornis L. and/or Orpiment $As_2S_3$ was changed.

  • PDF

Involvement of Endoplasmic Reticulum Stress Response in the Neuronal Differentiation

  • Cho, Yoon-Mi;Jang, Yoon-Seong;Jang, Young-Min;Seo, Jin-Young;Kim, Ho-Shik;Lee, Jeong-Hwa;Jeong, Seong-Whan;Kim, In-Kyung;Kwon, Oh-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.6
    • /
    • pp.239-246
    • /
    • 2007
  • Expressions of endoplasmic reticulum stress response (ERSR) genes were examined during the neuronal differentiation of rat fetal cortical precursor cells (rCPC) and rat pheochromocytoma PC12 cells. When rCPC were differentiated into neuronal cells for 7 days, early stem cell marker, nest in, expression was decreased from day 4, and neuronal markers such as neurofilament-L, -M and Tuj1 were increased after day 4. In this condition, expressions of BIP, ATF6, and phosphorylated PERK as well as their down stream signaling molecules such as CHOP, ATF4, XBP1, GADD34, Nrf2 and $p58^{IPK}$ were significantly increased, suggesting the induction of ERSR during neuronal differentiation of rCPC. ERSR was also induced during the differentiation of PC12 cells for 9 days with NGF. Neurofilament-L transcript was time-dependently increased. Both mRNA and protein levels of Tuj1 were increased after the induction, and the significant increase in NeuN was observed at day 9. Similar to the expression patterns of neuronal markers, BIP/GRP78 and CHOP mRNAs were highly increased at day 9, and ATF4 mRNA was also increased from day 7. These results strongly suggest the induction and possible role of ERSR in neuronal differentiation process. Further study to identify targets responsible for neuronal induction will be necessary.

Clostridium difficile Toxin A Induces Reactive Oxygen Species Production and p38 MAPK Activation to Exert Cellular Toxicity in Neuronal Cells

  • Zhang, Peng;Hong, Ji;Yoon, I Na;Kang, Jin Ku;Hwang, Jae Sam;Kim, Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1163-1170
    • /
    • 2017
  • Clostridium difficile releases two exotoxins, toxin A and toxin B, which disrupt the epithelial cell barrier in the gut to increase mucosal permeability and trigger inflammation with severe diarrhea. Many studies have suggested that enteric nerves are also directly involved in the progression of this toxin-mediated inflammation and diarrhea. C. difficile toxin A is known to enhance neurotransmitter secretion, increase gut motility, and suppress sympathetic neurotransmission in the guinea pig colitis model. Although previous studies have examined the pathophysiological role of enteric nerves in gut inflammation, the direct effect of toxins on neuronal cells and the molecular mechanisms underlying toxin-induced neuronal stress remained to be unveiled. Here, we examined the toxicity of C. difficile toxin A against neuronal cells (SH-SY5Y). We found that toxin A treatment time- and dose-dependently decreased cell viability and triggered apoptosis accompanied by caspase-3 activation in this cell line. These effects were found to depend on the up-regulation of reactive oxygen species (ROS) and the subsequent activation of p38 MAPK and induction of $p21^{Cip1/Waf1}$. Moreover, the N-acetyl-$\text\tiny L$-cysteine (NAC)-induced down-regulation of ROS could recover the viability loss and apoptosis of toxin A-treated neuronal cells. These results collectively suggest that C. difficile toxin A is toxic for neuronal cells, and that this is associated with rapid ROS generation and subsequent p38 MAPK activation and $p21^{Cip1/Waf1}$ up-regulation. Moreover, our data suggest that NAC could inhibit the toxicity of C. difficile toxin A toward enteric neurons.

The Effect of Aucklandiae Radix.Moschus(木香.麝香)'s for Delayed Neuronal Death in Hypoxia (목향(木香) 및 사향(麝香)이 저산소증 유발 배양 대뇌신경세포에 미치는 영향)

  • Jeong Sung-Hyun;Shin Gil-Cho;Lee Won-Chu;Moon Il-Su;Ryu Do-Kyun
    • The Journal of Internal Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.348-357
    • /
    • 2003
  • Objectives : The purpose of this investigation is to evaluate the effects of Aucklandiae Radix Moschus(木香 麝香)and to study the mechanism for neuronal death protection in hypoxia with Embryonic day 20 (E20) cortical cells of a rat (Sprague Dawley). Methods : E20 cortical cells used in this investigation were dissociated in Neurobasal media and grown for 14 days in vitro (DIV). On 14 DIV, Aucklandiae Radix Moschus(木香 麝香) was added to the culture media for 72 hrs. On 17 DIV, cells were given a hypoxic shock and further incubated in normoxia for another three days. On 20 DIV, Moschus(麝香)'s effects for neuronal death protection were evaluated by LDH assay and the mechanisms were studied by Bcl-2, Bak, Bax, caspase family. Results : This study indicate that Aucklandiae Radix(木香)'s effects for neuronal death protection in normoxia and Scutellariae Radix(麝香)'s effects for neuronal death protection in hypoxia were confirmed by LDH assay in culture method of Embryonic day 20(E20) cortical neuroblast. Moschus(麝香)'s mechanism for neuronal death protection in hypoxia is to increase the anti-apoptosis protein Bcl-2. Conclusions : It may be reasonable to propose that Moschus(麝香) protects delayed neuronal death in hypoxia by increasing Bcl-2, thereby reducing mitochondrial permeability transition(PT) pores, the cytochrome c channels.

  • PDF

Noni Inhibits Neuronal Damage Caused by the Immune Reaction of Microglial Cells Activated by Doxorubicin (Doxorubicin에 의해 활성화된 미세 아교세포의 면역반응으로 인한 신경손상에 Noni가 미치는 영향)

  • Jung, Se-Hwa;Lee, Seong-Min;Ha, Ji-Sun;Yang, Seung-Ju;Kim, Pyung-Hwan
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.4
    • /
    • pp.389-397
    • /
    • 2020
  • Microglial cells function as major immune cells in the brain, playing an important role in the protection and damage of neurons. BV2 microglia, activated by drug stimulation, secrete inflammatory cytokines by activating the nuclear factor kappa-light-chain-enhancer of the activated B cells pathway and are involved in neuroinflammatory and immune responses. The overactivation of microglia by stimuli can cause neuronal damage, leading to brain disease. Noni, a natural product, reduces the activity of microglia to prevent neuronal damage and is a potential natural medicine because it exerts excellent regeneration and anti-inflammatory effects on damaged cells. In this study, when noni was used to treat BV2 cells stimulated by the anti-cancer drug doxorubicin, it reduced the release of pro-inflammatory cytokines from BV2. On the other hand, neuronal damage is a side effect of doxorubicin. Therefore, the cytokines released from doxorubicin-stimulated BV2 cells treated with noni had a positive effect on the neuronal viability compared to those released from doxorubicin-stimulated BV2 cells not treated with Noni. Thus, Noni increases neuronal viability. These results suggest that noni inhibits the release of cytokines by regulating the nuclear factor kappa-light-chain-enhancer of the activated B cells pathway of BV2, thereby inhibiting neuronal damage.

Protective effects of perilla oil and alpha linolenic acid on SH-SY5Y neuronal cell death induced by hydrogen peroxide

  • Lee, Ah Young;Choi, Ji Myung;Lee, Myoung Hee;Lee, Jaemin;Lee, Sanghyun;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • v.12 no.2
    • /
    • pp.93-100
    • /
    • 2018
  • BACKGROUND/OBJECTIVE: Oxidative stress plays a key role in neuronal cell damage, which is associated with neurodegenerative disease. The aim of present study was to investigate the neuroprotective effects of perilla oil (PO) and its active component, alpha-linolenic acid (ALA), against hydrogen peroxide $(H_2O_2)$-induced oxidative stress in SH-SY5Y neuronal cells. MATERIALS/METHODS: The SH-SY5Y human neuroblastoma cells exposed to $250{\mu}M$ $H_2O_2$ for 24 h were treated with different concentrations of PO (25, 125, 250 and $500{\mu}g/mL$) and its major fatty acid, ALA (1, 2.5, 5 and $25{\mu}g/mL$). We examined the effects of PO and ALA on $H_2O_2$-induced cell viability, lactate dehydrogenase (LDH) release, and nuclear condensation. Moreover, we determined whether PO and ALA regulated the apoptosis-related protein expressions, such as cleaved-poly ADP ribose polymerase (PARP), cleaved caspase-9 and -3, BCL-2 and BAX. RESULTS: Treatment of $H_2O_2$ resulted in decreased cell viability, increased LDH release, and increase in the nuclei condensation as indicated by Hoechst 33342 staining. However, PO and ALA treatment significantly attenuated the neuronal cell death, indicating that PO and ALA potently blocked the $H_2O_2$-induced neuronal apoptosis. Furthermore, cleaved-PARP, cleaved caspase-9 and -3 activations were significantly decreased in the presence of PO and ALA, and the $H_2O_2$-induced up-regulated BAX/BCL-2 ratio was blocked after treatment with PO and ALA. CONCLUSIONS: PO and its main fatty acid, ALA, exerted the protective activity from neuronal oxidative stress induced by $H_2O_2$. They regulated apoptotic pathway in neuronal cell death by alleviation of BAX/BCL-2 ratio, and down-regulation of cleaved-PARP and cleaved caspase-9 and -3. Although further studies are required to verify the protective mechanisms of PO and ALA from neuronal damage, PO and ALA are the promising agent against oxidative stress-induced apoptotic neuronal cell death.

The Effect of Woohwangcheongsim-won on Delayed Neuronal Death in Hypoxia (저산소증으로 유발된 지연성 신경세포사에 우황청심원이 미치는 영향)

  • 김민석;정승현;신길조;문일수;이원철
    • The Journal of Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.145-163
    • /
    • 2002
  • Objectives: The purpose of this investigation was to evaluate the effects of Woohwangcheongsim-won and to study the mechanism for neuronal death protection in hypoxia with Embryonic day 20 (E20) cortical cells of a rat (Sprague Dawley). Methods: E20 cortical cells were dissociated in neurobasal media and grown for 14 days in vitro (DIV). On 14 DIV, Woohwangcheongsim-won was added to the culture media for 24 hrs or 72 hrs. On 17 DIV, cells were given a hypoxic shock and further incubated in normoxia for another three days. On 20 DIV, Woohwangcheongsim-won's effects for neuronal death protection were evaluated by LDH assay, propidium iodide stain and phospho-H2AX immunostain and the mechanisms were studied by Bcl-2, Bak, Bax, caspase family, PKCα, ca1pain I. Results & Conclusions : 1. This study indicated that Woohwangcheongsim-won's effects for neuronal death protection in hypoxia were confirmed by LDH assay, propidium iodide stain and phospho-H2AX immunostain in culture method of Embryonic day 20(E20) cortical neuroblasts. 2. Woohwangcheongsim-won's mechanisms for neuronal death protection in hypoxia are to reduce the membrane damage fraction, to restrain DNA truncate, to restrain inflow of cytochrome c into cellularity caused by Bak diminution, to reduce the caspase cascade intiator caspase-8 and the effector caspase-3, to reduce the calpain I activity and to increase PKCand its activity in the membrane fraction. (J Korean Oriental Moo 2002;23(3):145~163)

  • PDF