• Title/Summary/Keyword: Neuromuscular force

Search Result 62, Processing Time 0.023 seconds

The Influence of Trunk Rotation Exercise and PNF Exercise on Gait in the Individuals with Malalignment Syndrome (체간 양측성 회전 운동과 PNF 운동이 부정렬 증후군을 가진 성인의 보행에 미치는 영향)

  • Choi, Jae-Won;No, Hyun-Jeung
    • PNF and Movement
    • /
    • v.9 no.4
    • /
    • pp.49-55
    • /
    • 2011
  • Purpose : The aim of this study was to identify of bilateral trunk rotation(BTR) exercise and PNF exercise on gait in the individuals with malalignment syndrome. Methods : Subjects were 32 that were divided 2 groups in 20's generation. Interventions were trunk ratation exercise and PNF exercise. We used Medex for trunk rotation exercise. BTR group received exercise for three-sets (10min/set) along with stretching exercise ten-minutes, 3 times per week. PNF group took turns the D1 pattern in upper extremity and the D1 pattern in the opposite side of lower extremity for three-sets (10min/set). The measurement were force metatarsal 1 (FM 1), impulse metatarsal 1 (IM 1), force heel lat (FHL), impulse heel lat (IHL) by using footscan (RS scan). Statistical method was repeated measurement of ANOVA and p value was 0.05. Results : BTR and PNF group were significantly different in time(FM 1, IM 1, FHL, IHL). As different of right/left, BTR and PNF exercise were significantly different in FM 1, IM 1, FHL. Conclusion : BTR exercise was good exercise for malalignment but needs expensive equipment, for example, Medex. PNF exercise doesn't need expensive equipment but good method in malalignment syndrome person for gait ability. If PNF exercise is more experiment, PNF exercise could use variety for more patients.

Analysis of Injury Mechanism on Ankle and Knee during Drop Landings According to Landing Directions (드롭랜딩 시 착지 방향에 따른 발목과 무릎 상해 기전 분석)

  • Cho, Joon-Haeng;Kim, Kyoung-Hun;Moon, Gon-Sung;Cho, Young-Jae;Lee, Sung-Cheol
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.1
    • /
    • pp.67-73
    • /
    • 2010
  • The purpose of this study was to compare the differences in kinematic and kinetic parameters of the ankle and knee joint according to three landing direction(central, left, right). Fifteen collegiate male athletes(age: $22.7{\pm}3.5$ years, height: $174.9{\pm}7.1\;cm$, weight: $69.4{\pm}6.7\;kg$) with the right leg as dominant were chosen. The subjects performed series of drop landings in three directions. In terms of the three different landing directions, plantar flexion was the greatest during the central drop landings. For each initial contact of the landing direction, plantar flexion of the ankle was greatest at the central drop landing, inversion of the ankle was greatest at the right landing and valgus of the knee was greatest at the left drop landing. Regarding the peak force, the greatest was at the 1st peak force during the central drop landing. For the time-span of the 2nd peak force and the 2-1 peak force, both right sides resulted as the greatest. Therefore, with the appropriate training in landing techniques and developing neuromuscular training for proprioception by taking the injury mechanisms on ankle and knee during drop landings into account, it will assist in preventing such injuries.

Effect of Multisensory Intervention on Locomotor Function in Older Adults with a History of Frequent Falls

  • You, Sung-Hyun
    • Physical Therapy Korea
    • /
    • v.11 no.4
    • /
    • pp.51-60
    • /
    • 2004
  • Falls are common, costly, and a leading cause of death among older adults. The major predisposing factors of a fall may include age-related deterioration in the dynamic system composed of auditory, somatosensory, vestibular, visual, musculoskeletal, and neuromuscular subsystems. Older adults with a history of frequent falls demonstrated significant reductions in gait velocity, muscle force production, and balance performance. These altered neuromechanical characteristics may be further exaggerated when faced with conflicting multisensory conditions. Despite the important contribution of multisensory function on the sensorimotor system during postural and locomotor tasks, it remains unclear whether multisensory intervention will produce dynamic balance improvement during locomotion in older adults with a history of frequent falls. Therefore, the purpose of this paper is to address important factors associated with falls in elderly adults and provide theoretical rationale for a multisensory intervention program model.

  • PDF

Full mouth rehabilitation with vertical dimension increase in patient with severely worn out dentition (과도한 마모를 가진 환자의 수직 고경 증가를 동반한 전악수복 증례)

  • Jung, Ji-Hye
    • The Journal of the Korean dental association
    • /
    • v.54 no.6
    • /
    • pp.438-446
    • /
    • 2016
  • Severe tooth wear may cause the pathologic change of the TMJ and masticatory muscles, unesthetic facial appearance, pathogenic pulp and occlusal disharmony. Treating patients with severely worn dentition often requires full mouth rehabilitation with increasing vertical dimension. Proper diagnosis and treatment planning are important for esthetic and functional definitive restorations and the long term stability of the neuromuscular system and the TMJ. In this case, 66 year-old female presented with generalized worn dentition. Based on assessment, pathologic destruction of teeth structure on entire dentition was caused by masticatory force and diet habit without loss of vertical dimension. Subsequently, 3 mm increase of vertical dimension that based on incisor for tooth restoration and esthetic improvement was determined. After 8 weeks stabilization period with temporary fixed prostheses, definitive prostheses were fabricated. After 6 months follow up period, satisfactory outcomes were attained both functional and esthetic aspects through this procedure.

  • PDF

Three-dimensional finite element analysis of the deformation of the human mandible: a preliminary study from the perspective of orthodontic mini-implant stability

  • Baek, Sun-Hye;Cha, Hyun-Suk;Cha, Jung-Yul;Moon, Yoon-Shik;Sung, Sang-Jin
    • The korean journal of orthodontics
    • /
    • v.42 no.4
    • /
    • pp.159-168
    • /
    • 2012
  • Objective: The aims of this study were to investigate mandibular deformation under clenching and to estimate its effect on the stability of orthodontic mini-implants (OMI). Methods: Three finite element models were constructed using computed tomography (CT) images of 3 adults with different mandibular plane angles (A, low; B, average; and C, high). An OMI was placed between #45 and #46 in each model. Mandibular deformation under premolar and molar clenching was simulated. Comparisons were made between peri-orthodontic mini-implant compressive strain (POMI-CSTN) under clenching and orthodontic traction forces (150 g and 200 g). Results: Three models with different mandibular plane angles demonstrated different functional deformation characteristics. The compressive strains around the OMI were distributed mesiodistally rather than occlusogingivally. In model A, the maximum POMI-CSTN under clenching was observed at the mesial aspect of #46 (1,401.75 microstrain [${\mu}E$]), and similar maximum POMI-CSTN was observed under a traction force of 150 g (1,415 ${\mu}E$). Conclusions: The maximum POMI-CSTN developed by clenching failed to exceed the normally allowed compressive cortical bone strains; however, additional orthodontic traction force to the OMI may increase POMI-CSTN to compromise OMI stability.

The Effects of Augmented Low-dye Taping on One Leg Standing Balance in People with Flat Feet (평발에 적용한 아규먼트 로우-다이 테이핑이 한 발 서기 균형에 미치는 영향)

  • Hwang, Yoon-Seong;Lee, Jeong-Mok;Kang, Ho-Jeong;Park, Ji-Seong;Park, Hae-Sol;Woo, Young-Keun
    • PNF and Movement
    • /
    • v.17 no.2
    • /
    • pp.215-222
    • /
    • 2019
  • Purpose: The objective of this study was to investigate whether augmented low-dye taping treatment, which consists of low-dye, reverse-six, and calcaneal-sling taping, is effective in alleviating the collapse of the medial longitudinal arch, which is used for physical balancing during one leg standing. Methods: The subjects comprised 27 students in their 20s whose navicular bone height was lowered by 10 mm or more when evaluated using the navicular drop test. Those with interference factors like deformities, fractures, or traumas were excluded. Frequency-division multiplexing was used to measure one leg standing, and the method to avoir the average each time after 3 times of measurement was applied. Results: Significant differences in the center of pressure (COP) path length, COP average velocity, and forefoot force were observed during left leg standing (p<0.05), but for right leg standing, only changes in forefoot force were noted. Conclusion: Based on the changes to the non-dominant leg in terms of COP path length, COP average velocity, and forefoot force, the immediate effect of augmented low-dye taping, which combines three types of anti-pronation taping, on one leg standing balance in people with flat feet was confirmed.

Comparison of Lower Extremity Electromyography and Ground Reaction Force during Gait Termination according to the Performance of the Stop Signal Task (정지신호과제의 수행에 따른 보행정지 시 다리 근전도 및 지면반발력 비교)

  • Koo, Dong-Kyun;Kwon, Jung-Won
    • PNF and Movement
    • /
    • v.20 no.1
    • /
    • pp.135-145
    • /
    • 2022
  • Purpose: The purpose of this study was to investigate the association between cognitive and motor inhibition by comparing muscle activity and ground reaction force during unplanned gait termination according to reaction time measured through the stop-signal task. Methods: Sixteen young adults performed a stop-signal task and an unplanned gait termination separately. The subjects were divided into fast and slow groups based on their stop-signal reaction time (SSRT), as measured by the stop-signal task. Electromyography (EMG) and ground reaction force (GRF) were compared between the groups during unplanned gait termination. The data for gait termination were divided into three phases (Phase 1 to 3). The Mann-Whitney U test was used to compare spatiotemporal gait parameters and EMG and GRF data between groups. Results: The slow group had significantly higher activity of the tibialis anterior in Phase 2 and Phase 3 than the fast group (p <0.05). In Phase 1, the fast group had significantly shorter time to peak amplitude (TPA) of the soleus than the slow group (p <0.05). In Phase 2, the TPA of the tibialis anterior was significantly lower in the fast group than the slow group (p <0.05). In Phase 3, there was no significant difference in the GRF between the two groups (p >0.05). There were no significant difference between the two groups in the spatiotemporal gait parameters (p >0.05). Conclusion: Compared to the slow group, the fast group with cognitive inhibition suppressed muscle activity for unplanned gait termination. The association between SSRT and unplanned gait termination shows that a participant's ability to suppress an incipient finger response is relevant to their ability to construct a corrective gait pattern in a choice-demanding environment.

Correlation of the Lower Limb Nerve Conduction Velocity with Height and Leg Length (한국인에서 신장과 다리길이에 따른 하지 신경전도검사속도의 상관관계조사)

  • Jae-Hwan SONG;Sung-Hee KIM;Dae-Hyun KIM
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.56 no.2
    • /
    • pp.156-162
    • /
    • 2024
  • Nerve conduction study (NCS) is an essential test for the diagnosis and follow-up of peripheral neuropathy. NCS can objectively quantify peripheral nerve function. NCS is affected by physiological factors such as height, age, body mass index, etc. Hence, the American Association of Neuromuscular & Electrodiagnosis Medicine (AANEM) is currently forming a Normal Data Task Force (NDTF) to present the normal value, but the number is significantly less. Currently, no research has been carried out on the correlation between nerve conduction speed and height and lower limb length in Koreans. Hence, this study sought to compare the nerve conduction velocity of the lower limbs according to the height and lower limb length. A total of 49 subjects were recruited. When the motor nerve conduction velocity and sensory nerve conduction velocity were compared according to the height and leg length, there was a statistically significant negative correlation of the peroneal and left tibial motor nerves with the height. Also, a statistically significant negative correlation was observed with the superficial peroneal sensory nerve and the sural nerve and the leg length. However, in this study, all the subject are in twentys age, whereas the NDTF is divided by age. Hence, additional studies involving subjects of various age groups are needed.

Kinetic Analysis of The foot and ankle during walking (보행시 발과 족관절의 운동학적 분석)

  • Lee, Yun-Seob;Shin, Hyung-Soo
    • PNF and Movement
    • /
    • v.4 no.1
    • /
    • pp.45-50
    • /
    • 2006
  • Purpose : This study shows the movements of the ankle and the foot in walking stages, and helps to diagnose and treat the problems of the ankle and the foot. The foot in human is a mean of the transportation, body support, and shock absorber. However, the slightest changes in the anatomical position can cause a significant increase of the stress and force in the ankle and the foot. The regular compressive force in the ankle of the normal person is generated by the contraction of the gastrocnemius and popliteus muscles, and transmitted to the achilles tendon. The plantar flexion about 10 degrees occurs immediately after the heel strike, getting ready for the weight acceptance. The shear force about 80 % of the body weight is generated immediately after the heel off of the mid stance phase. In those who have a problem in the ankle, the compression force at the ankle decreased to 1/3 of the body weight, and the shear force decreased, and the compressive force was reached at their maximum level earlier than the normal people. Conclusion : Analysis of the movements at the ankle and the foot in walking phase can make the effort to diagnose and treat the ankle and foot with the problems. However, the further study is necessary.

  • PDF

The Effect of Squat Exercise According to Ankle Angle-Toe 0°, Toe In 10°, Toe Out 10°-on Muscle Thickness and Ground Reaction Force of Vastus Medialis Oblique and Vastus Lateralis Oblique Muscles (발목각도 Toe 0°, Toe in 10°, Toe out 10°에 따른 스쿼트 운동이 안쪽넓은근과 가쪽넓은근의 근두께와 지면반발력에 미치는 영향)

  • Ahn, Su-Hong;Lee, Su-Kyong
    • PNF and Movement
    • /
    • v.18 no.1
    • /
    • pp.65-75
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the differences in muscle thickness and ground reaction force of the vastus medialis oblique and vastus lateral oblique muscles during squats at ankle angles of toe 0°, toe in 10°, and toe out 10°. Methods: In this study, 9 male and 17 female students in their 20s participated in a randomized controlled trial and were compared according to the ankle angles of toe 0°, toe in 10°, and toe out 10°. To determine the reliability and measurement of muscle thickness according to ankle angle using ultrasound equipment and muscle thickness, the participants' ankle angles-toe 0°, toe in 10°, and toe out 10°-were measured three times at the vastus medialis oblique and vastus lateralis oblique muscles during squats. At the same time, the maximum vertical ground reaction force was measured with a force plate. A total of three measurements were taken and averaged, and two minutes of squat movements were assessed between ankle angles to prevent target action. Results: The results of this study illustrated that the reliability of the vastus medialis oblique muscles and vastus lateralis oblique muscles in ankle angle was high. The difference in muscle thickness was significantly greater in comparing the toe out 10° angle with the toe 0° angle than between toe in 10° and toe out 10° in vastus medialis oblique and vastus lateralis oblique (p < 0.05). There was no statistically significant difference between the ankle angle of toe 0° and toe in 10° (p > 0.05). The maximum vertical ground reaction force was significantly greater at toe out 10° than at the ankle angle of toe 0° and toe out 10° and between toe in 10° and toe out 10° (p < 0.05). There was no statistically significant difference in the comparison between toe 0° and toe in 10° (p > 0.05). Conclusion: Squatting at an ankle angle of toe out 10° increases the dorsi flexion; thus, the stability of the ankle and the thickness of both oblique muscles increased to perform more effective squats. In addition, as the base of support widens, it is thought that the stability of the posture increases so that squat training can be performed safely.