• Title/Summary/Keyword: Neurofibrillary tangles

Search Result 52, Processing Time 0.017 seconds

Effects of MeOH Extract from Stem Bark of Plantocracy strobilacea on the Metabolism of Amyloid Precursor Protein in Neuroblastoma Cells (화향수(化香樹) 수피(樹皮)의 메탄올 추출물이 신경세포에서 아밀로이드 전구단백질의 대사에 미치는 영향)

  • Jiang, Gui Bao;Leem, Jae Yoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.1
    • /
    • pp.57-62
    • /
    • 2013
  • Alzheimer's disease (AD), one of the most common forms of dementia, is characterized pathologically by the presence of intracellular neurofibrillary tangles and deposition of ${\beta}$-amyloid ($A{\beta}$) peptides of 40-42 residues, which are generated by processing of amyloid precursor protein (APP). $A{\beta}$ has been believed to be neurotoxic and now is also considered to have a role on the mechanism of memory dysfunction. Here, we show that MeOH extract from stem bark of Platycarya strobilacea Sieb. et. Zucc. (PSM) affects on the processing of APP from the APPswe over-expressing Neuro2a cell line. We found that PSM may regulate the processing of APP and increase the sAPP${\alpha}$. PSM does not change the protein level of presenilin and nicastrin, however, it reduces the protein expression level of BACE1. In addition, PSM reduces the secretion level of $A{\beta}42$ and $A{\beta}40$ from the cell line without toxicity. We suggest that Platycarya strobilacea may be useful as a herbal medicine to treat Alzheimer's disease.

Effects of Morinda officinalis (MDOF) on Inhibition of Impairment of Learning and Memory, and Acetylcholinesterase in Amnesia Mice (파극천(巴戟天)이 치매병태모델에 미치는 영향(影響))

  • Jung, In-Chul;Lee, Sang-Ryong;Kim, Hyun-Soo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.14 no.1
    • /
    • pp.45-58
    • /
    • 2003
  • Alzheimer's disease(AD) is progressive neurodegenerative disease, which is pathologically characterized by neuritic plaques and neurofibrillary tangles associated with the acetylcholinesterase, apolipoprotein E and butylcholinesterase, and by mutations in the presenilin genes PS1 and PS2, and amyloid precursor proteins (APP) overexpression. The present research is to examine the inhibition effect of MDOF on PS-1, PS-2 and APP overexpression by detected to Western blotting. To verify the effects of MDOF on cognitive deficits further, we tested it on the scopolamine-induced amnesia model of the mice using the Morris water maze tests, and there was ameliorative effects of memory impairment as a protection to scopolamine. MDOF only partially blocked the increase in blood serum level of acetylcholinesterase and Uric acid induced by scopolamine, whereas blood glucose level was shown to attenuate the amnesia induced by scopolamine and inreased extracelluar serum level compared with only scopolamine injection. In conclusion, studies of MDOF that has been know as anti-choline and inhibition ablilities of APP overexpression, this could also be used further as a important research data for a preventive and promising symptomatic treatment for Alzheimer's disease.

  • PDF

Effects of Cyperus rotundus (CPRT) on Inhibition of Impairment of Learning and Memory, and Acetylcholinesterase in Amnesia Mice (향부자(香附子)가 치매병태모델에 미치는 영향(影響))

  • Jung, In-Chul;Lee, Sang-Ryong;Yun, Sang-Hak
    • Journal of Oriental Neuropsychiatry
    • /
    • v.14 no.1
    • /
    • pp.59-74
    • /
    • 2003
  • Alzheimer's disease(AD) is a progressive neurodegenerative disease, which is pathologically characterized by neuritic plaques and neurofibrillary tangles associated with the acetylcholinesterase, apolipoprotein E and butylcholinesterase, and by mutations in the presenilin genes PS1 and PS2, and amyloid precursor proteins (APP) overexpression. The present research is to examine the inhibition effect of CPRT on PS-1, PS-2 and APP overexpression by detected to Western blotting. To verify the Effects of CPRT on cognitive deficits further, we tested it on the scopolamine-induced amnesia model of the mice using the Morris water maze tests, and there was ameliorative effects of memory impairment as a protection to scopolamine. CPRT only partially blocked the increase in blood serum level of acetylcholinesterase and Uric acid induced by scopolamine, whereas blood glucose level was shown to attenuate the amnesia induced by scopolamine and inreased extracellular serum level compared with only scopolamine injection. In conclusion, studies of CPRT that has been known as anti-choline and inhibition ablilities of APP overexpression, this could also be used further as a important research data for a preventive and promising symptomatic treatment for Alzheimer's disease.

  • PDF

The Effect of Bee Venom on Acetylcholine Esterase Activity during Scopolamine Induced Memorial Impairment (봉약침액(蜂藥鍼液)이 Scopolamine으로 기억장애(記憶障碍) 유발(誘發) 시 Acetylcholine Esterase 활성에 미치는 영향(影響))

  • Song, Jeong-Yeol;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.23 no.3
    • /
    • pp.117-127
    • /
    • 2006
  • Alzheimer's disease (AD) is the most prevalent form of neurodegenerative disease associated with aging in the human population. This disease is characterized by the following 4 structural changes : Atrophy of the Cortex, Parasympathetic, and other neural cells, the existence of Neurofibrillary tangles (NFTs), and the accumulation of Senile plaques. NFTs and Senile plaques is known to be the index of this disease. Senile plaques disturbs the neutro transmission and depletes of Acetylcholine. So, Recovery of Acetylcholine is the primal objective for treating Alzheimer's disease. So, Inhibiting the activity of Acetylcholine Esterase (AChE), which causes the hydrolysus of acetylcholine into choline and acetate, can be seen as a key role for treating Alzheimer's disease. Increasing body of evidence has been demonstrated that Bee Venom Acupuncture (BV) could compete with complex protein involving in multiple step of $NF-_{\kappa}B$ activation and exert the anti-inflammatory potential of combined inhibition of the prostanoid and nitric oxide synthesis systems by inhibition of IKK and $NF-_{\kappa}B$. BV dose-dependently attenuated Scopolamine-induced Acetylcholine esterase activities in cerebral cortex and hippocampus of the mice brain. This study therefore suggests that BV acupuncture method may be useful for prevention of development or progression of AD.

  • PDF

Clinical Neuropathological Analysis of 10 Cases of Cerebral Amyloid Angiopathy-Related Cerebral Lobar Hemorrhage

  • Li, Xiao-Qiu;Su, Dong-Feng;Chen, Hui-Sheng;Fang, Qu
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.1
    • /
    • pp.30-35
    • /
    • 2015
  • Objective : The clinical and pathological characteristics of 10 cases of cerebral amyloid angiopathy (CAA)-related cerebral lobar hemorrhage (CLH) that was diagnosed at autopsy were investigated to facilitate the diagnosis of this condition. Methods : The clinical characteristics of 10 cases of CAA-related CLH were retrospectively reviewed, and a neuropathological examination was performed on autopsy samples. Results : The 10 cases included two with a single lobar hemorrhage and eight with multifocal lobar hemorrhages. In all of the cases, the hemorrhage bled into the subarachnoid space. Pathological examinations of the 10 cases revealed microaneurysms in two, double barrel-like changes in four, multifocal arteriolar clusters in five, obliterative onion skin-like intimal changes in four, fibrinoid necrosis of the vessels in seven, neurofibrillary tangles in eight, and senile plaques in five cases. Conclusion : CAA-related CLHs were located primarily in the parietal, temporal, and occipital lobes. These hemorrhages normally consisted of multiple repeated CLHs that frequently bled into the subarachnoid space. CAA-associated microvascular lesions may be the pathological factor underlying CLH.

Degradation or aggregation: the ramifications of post-translational modifications on tau

  • Park, Seoyoung;Lee, Jung Hoon;Jeon, Jun Hyoung;Lee, Min Jae
    • BMB Reports
    • /
    • v.51 no.6
    • /
    • pp.265-273
    • /
    • 2018
  • Tau protein is encoded in the microtubule-associated protein tau (MAPT) gene and contributes to the stability of microtubules in axons. Despite of its basic isoelectric point and high solubility, tau is often found in intraneuronal filamentous inclusions such as paired helical filaments (PHFs), which are the primary constituent of neurofibrillary tangles (NFTs). This pathological feature is the nosological entity termed "tauopathies" which notably include Alzheimer's disease (AD). A proteinaceous signature of all tauopathies is hyperphosphorylation of the accumulated tau, which has been extensively studied as a major pharmacological target for AD therapy. However, in addition to phosphorylation events, tau undergoes a number of diverse posttranslational modifications (PTMs) which appear to be controlled by complex crosstalk. It remains to be elucidated which of the PTMs or their combinations have pro-aggregation or anti-aggregation properties. In this review, we outline the consequences of and communications between several key PTMs of tau, such as acetylation, phosphorylation, and ubiquitination, focusing on their roles in aggregation and degradation. We place emphasis on the structure of tau protofilaments from the human AD brain, which may be good targets to modulate etiological PTMs which cause tau aggregation.

Molecular and Cellular Basis of Neurodegeneration in Alzheimer's Disease

  • Jeong, Sangyun
    • Molecules and Cells
    • /
    • v.40 no.9
    • /
    • pp.613-620
    • /
    • 2017
  • The most common form of senile dementia is Alzheimer's disease (AD), which is characterized by the extracellular deposition of amyloid ${\beta}-peptide$ ($A{\beta}$) plaques and the intracellular formation of neurofibrillary tangles (NFTs) in the cerebral cortex. Tau abnormalities are commonly observed in many neurodegenerative diseases including AD, Parkinson's disease, and Pick's disease. Interestingly, tau-mediated formation of NFTs in AD brains shows better correlation with cognitive impairment than $A{\beta}$ plaque accumulation; pathological tau alone is sufficient to elicit frontotemporal dementia, but it does not cause AD. A growing amount of evidence suggests that soluble $A{\beta}$ oligomers in concert with hyperphosphorylated tau (pTau) serve as the major pathogenic drivers of neurodegeneration in AD. Increased $A{\beta}$ oligomers trigger neuronal dysfunction and network alternations in learning and memory circuitry prior to clinical onset of AD, leading to cognitive decline. Furthermore, accumulated damage to mitochondria in the course of aging, which is the best-known nongenetic risk factor for AD, may collaborate with soluble $A{\beta}$ and pTau to induce synapse loss and cognitive impairment in AD. In this review, I summarize and discuss the current knowledge of the molecular and cellular biology of AD and also the mechanisms that underlie $A{\beta}-mediated$ neurodegeneration.

Iron Can Accelerate the Conjugation Reaction between Abeta 1-40 Peptide and MDA

  • Park, Yong-Hoon;Jung, Jai-Yun;Son, Il-Hong
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.2
    • /
    • pp.108-112
    • /
    • 2009
  • Alzheimer's disease(AD) is a neurodegenerative disorder characterized pathologically by senile plaques, neurofibrillary tangles, and synapse loss. Especially, extracellular beta-amyloid (Abeta) deposition is a major pathological hallmark of Alzheimer's disease (AD). In AD senile plaques, high level of iron and car-bonylated Abeta were detected. Iron has a Lewis acid property which can increase the electrophilicity of carbonyls, which may react catalytically with nucleophiles, such as amines. Hence, this study investigated whether or not iron could promote the carbonylation of amine with malondialdehyde (MDA) in the physiological condition. As the basic study, we examined that iron might promote the conjugation reaction between propylamine, monoamine molecule and MDA in the physiological condition. As the concentration of iron increased, the fluorescence intensity produced from the conjugation reaction increased in a dose-dependent manner. Instead of propylamine, we applied the same reaction condition to Abeta 1-40 peptide, one of major components founded in AD senile plaques for the conjugation reaction. As the result, the fluorescence intensity produced from the conjugation reaction between Abeta 1-40 peptide and MDA showed the similar trend to that of the reaction used with propylamine. This study suggests that iron can accelerate the conjugation reaction of MDA to Abeta 1-40 peptide and play an another important role in deterioration of AD brain.

Effects of ChenWhangBosimDan(CWBD) on Inhibition of Impairment of Learning and Memory, and Acetylcholinesterase in Amnesia mice (천왕보심단(天王補心丹)이 치매병태모델에 마치는 영향(影響))

  • Jung, In-Chul;Lee, Sang-Ryong;Lee, Jun-Young
    • Journal of Oriental Neuropsychiatry
    • /
    • v.13 no.2
    • /
    • pp.149-171
    • /
    • 2002
  • Alzheimer's disease(AD) is a progressive neurodegenerative disease, which is pathologically characterized by neuritic plaques and neurofibrillary tangles associated with the acetylcholinesterase, apolipoprotein E and butylcholinesterase, and by mutations in the presenilin genes PS1 and PS2, and amyloid precursor proteins (APPs)'s overexpression. The present research is to examine the inhibitory effect of CWBD on PS1, PS2 and APPs's overexpression detected by Western blotting. To verify further the effects of CWBD on cognitive deficits, we tested it on the scopolamine(1mg/kg)-induced amnesia model of the mice using the Morris water maze tests, and there were ameliorative effects on memory impairment as a protection from scopolamine. CWBD only partially blocked the increase in blood serum level of acetylcholinesterase and Uric acid induced by scopolamine, whereas blood glucose level was shown to attenuate the amnesia induced by scopolamine and increased extracellular serum level. In conclusion, studies of CWBD that has been known as anti-choline and inhibitory ablilities of APPs's overexpression could also be used further as a important research data for a preventive and promising symptomatic treatment for Alzheimer's disease.

  • PDF

Effects of YkJungJiHwangTang(YJJHT) on Inhibition of Impairment of Learning and Memory, and Acetylcholinesterase in Amnesia Mice (익정지황탕(益精地黃湯)이 치매병태(痴寐病態)모델에 미치는 영향(影響))

  • Choi Byong-Man;Lee Sang-Ryong
    • Journal of Oriental Neuropsychiatry
    • /
    • v.11 no.2
    • /
    • pp.23-42
    • /
    • 2000
  • Alzheimer's disease(AD) is progressive neurodegenerative disease, which is pathologically characterized by neuritic plaques and neurofibrillary tangles associated with the acetylcholinesterase, apolipoprotein E and butylcholinesterase, and by mutations in the presenilin genes PSI and PS2, and amyloid precursor proteins (APP) overexpression. The present research is to examine the inhibition effect of YJJHT on PS-1, PS-2 and APP overexpression by detected to Western blotting. To verify the EFFects of YJJHT on cognitive deficits further, we tested it on the scopolamine-induced amnesia model of the mice using the Morris water maze tests. and there was ameliorative effects of memory impairment s a protection to scopolamine. YJJHT only partially blocked the increase in blood serum level of acetylcholinesterase and Uric acid induced by scopolamine. whereas blood glucose level was shown to attenuate the amnesia induced by scopolamine and inreased extracellular serum level compared with only scopolamine injection. In conclusion, studies of YJJHT that has been know as anti-choline and inhibition ablilities of APP overexpression, this could also be used further as a important research data for a preventive and promising symptomatic treatment for Alzheimer's disease.

  • PDF