• Title/Summary/Keyword: Neurodegenerative Diseases

Search Result 451, Processing Time 0.029 seconds

The Impact of Pulmonary Disorders on Neurological Health (Lung-Brain Axis)

  • Hongryeol Park;Chan Hee Lee
    • IMMUNE NETWORK
    • /
    • v.24 no.3
    • /
    • pp.20.1-20.21
    • /
    • 2024
  • The brain and lungs, vital organs in the body, play essential roles in maintaining overall well-being and survival. These organs interact through complex and sophisticated bi-directional pathways known as the 'lung-brain axis', facilitated by their close proximity and neural connections. Numerous studies have underscored the mediation of the lung-brain axis by inflammatory responses and hypoxia-induced damage, which are pivotal to the progression of both pulmonary and neurological diseases. This review aims to delve into how pulmonary diseases, including acute/chronic airway diseases and pulmonary conditions, can instigate neurological disorders such as stroke, Alzheimer's disease, and Parkinson's disease. Additionally, we highlight the emerging research on the lung microbiome which, drawing parallels between the gut and lungs in terms of microbiome contents, may play a significant role in modulating brain health. Ultimately, this review paves the way for exciting avenues of future research and therapeutics in addressing respiratory and neurological diseases.

Matrix Metalloproteinases, New Insights into the Understanding of Neurodegenerative Disorders

  • Kim, Yoon-Seong;Joh, Tong-H.
    • Biomolecules & Therapeutics
    • /
    • v.20 no.2
    • /
    • pp.133-143
    • /
    • 2012
  • Matrix metalloproteinases (MMPs) are a subfamily of zinc-dependent proteases that are re-sponsible for degradation and remodeling of extracellular matrix proteins. The activity of MMPs is tightly regulated at several levels including cleavage of prodomain, allosteric activation, com-partmentalization and complex formation with tissue inhibitor of metalloproteinases (TIMPs). In the central nervous system (CNS), MMPs play a wide variety of roles ranging from brain devel-opment, synaptic plasticity and repair after injury to the pathogenesis of various brain disorders. Following general discussion on the domain structure and the regulation of activity of MMPs, we emphasize their implication in various brain disorder conditions such as Alzheimer's disease, multiple sclerosis, ischemia/reperfusion and Parkinson's disease. We further highlight accumu-lating evidence that MMPs might be the culprit in Parkinson's disease (PD). Among them, MMP-3 appears to be involved in a range of pathogenesis processes in PD including neuroinflamma-tion, apoptosis and degradation of ${\alpha}$-synuclein and DJ-1. MMP inhibitors could represent poten-tial novel therapeutic strategies for treatments of neurodegenerative diseases.

Contribution of Microbleeds on Microvascular Magnetic Resonance Imaging Signal

  • Chang Hyun Yoo;Junghwan Goh;Geon-Ho Jahng
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.88-100
    • /
    • 2022
  • Purpose: Cerebral microbleeds are more susceptible than surrounding tissues and have been associated with a variety of neurological and neurodegenerative disorders that are indicative of an underlying vascular pathology. We investigated relaxivity changes and microvascular indices in the presence of microbleeds in an imaging voxel by evaluating those before and after contrast agent injection. Methods: Monte Carlo simulations were run with a variety of conditions, including different magnetic field strengths (B0), different echo times, and different contrast agents. ΔR2* and ΔR2 and microvascular indices were calculated with varying microvascular vessel sizes and microbleed loads. Results: As B0 and the concentration of microbleeds increased, 𝜟R2* and 𝜟R2 increased. 𝜟R2* increased, but 𝜟R2 decreased slightly as the vessel radius increased. When the vessel radius was increased, the vessel size index (VSI) and mean vessel diameter (mVD) increased, and all other microvascular indices except mean vessel density (Q) increased when the concentration of microbleeds was increased. Conclusions: Because patients with neurodegenerative diseases often have microbleeds in their brains and VSI and mVD increase with increasing microbleeds, microbleeds can be altered microvascular signals in a voxel in the brain of a neurodegenerative disease at 3T magnetic resonance imaging.

Inhibitory Effect of Hirudo on Neuroinflammation in LPS-stimulated Microglial Cells (Lipopolysccharides에 의해 활성화된 미세아교세포에서 수질(水蛭) 추출물의 NF-kB 억제를 통한 뇌신경염증 억제 효과)

  • Gunhyuk Park;Sungyu Yang;Byeong Cheol Moon;Sumin Noh;Hye-Sun Lim
    • Journal of Environmental Science International
    • /
    • v.32 no.4
    • /
    • pp.259-266
    • /
    • 2023
  • Today, environmental pollution has been found to be one of the causes of various diseases, including brain and nervous system diseases. In particular, neurodegenerative diseases have been found to be caused by hyperactivation of immune system cells such as microglia. Preventive and therapeutic measures are needed to suppress them. Hirudo is known as a traditional herbal medicine, based on its multiple biological activities such as anti-eczema and anti-coagulation. In the present study, the anti-neuroinflammatory potential of hirudo extract was investigated in lipopolysccharide (LPS)-stimulated BV2 microglial cells and in mice. Hirudo extract significantly inhibited LPS-stimulated nitric oxide (NO) production and cytokine (IL-1Ra, KC, MCP-5, and RANTES) expression in a dose-dependent manner without causing cytotoxicity. Pretreatment with hirudo extract suppressed LPS-induced NF-κB p65 nuclear translocation. Moreover, hirudo extract reduced LPS-stimulated microglial acitivation and improved memory impairments. The results demonstrated that hirudo extract exerts anti-neuroinflammation activities, partly through inhibition of the NF-κB signaling pathway. These findings suggest that hirudo extract might have therapeutic potential with respect to neuroinflammation and neurodegenerative diseases.

Protection effect of New-Yeolda-Hanso tang against $\beta$-Amyloid Induced Cytotoxicity in NGF-differentiated PC12 Cells ($\beta$-Amyloid로 유도된 신경독성에 대한 열다한소탕(熱多寒少湯) 가감방(加感方)의 항(抗)치매효과)

  • Bae, Na-Young;Yang, Hyun-Ok;Ahn, Taek-Won
    • Journal of Sasang Constitutional Medicine
    • /
    • v.21 no.3
    • /
    • pp.138-153
    • /
    • 2009
  • 1. Objectives: Yeolda-Hanso tang (YH) has long been used as traditional herbal formula in Korea as various diseases. Now we modified Yeolda-Hanso tang (YH) for neurodegenerative diseases treatment and named New-Yeolda-Hanso tang (NYH). We investigated neuroprotective effects of NYH on NGF-differentiated PC12 cells cytotoxicity induced by $\beta$-Amyloid peptide (A$\beta$25-35) and evaluated the ability of NYH to prevent and treat for neurodegenerative diseases via autophagy enhancement. 2. Methods and Results: 1) Protective effect of NYH on PC12 cells cytotoxity induced by A$\beta$25-35. PC12 cells survival was measured by MTT and lactate dehydrogenase (LDH) assay. $20{\mu}M$ $\beta$-Amyloid peptide (A$\beta$25-35) induced cytotoxicity on NGF-differentiated PC12 cells. NYH attenuated the cytotoxic effects of A$\beta$25-35 in a dose-dependent manner. 2) Pharmacological induction of Autophagy by NYH in PC12 cells Autophagy induction and activation was measured by immunoblot assay. Marker of autophagy, LC3 II expression and the ratio of LC3-II/I was slightly increased in the protein treated with YH, and significantly augmented in the protein treated with NYH. NYH-induced increase of LC3-II protein level was inhibited by 3MA. 3) Induction of Autophagy by NYH on A$\beta$25-35-induced injury in PC12 cells In MTT assay, $100{\mu}g/ml$ re-treated NYH attenuated $20{\mu}M$ A$\beta$25-35-induced cytotoxicity in PC12 cells. Protection effect of NYH was blocked by autophagy inhibitor 3MA. In immunoblot assay, $1200{\mu}g/ml$ pre-treated NYH activated autophagy in $20{\mu}M$ A$\beta$25-35-induced cytotoxicity in PC12 cells. The observed effect was partially blocked by 3MA. 3. Conclusions: All the results indicated that NYH possesses neuroprotective potential partially mediated by autophagy enhancement and NYH may be considered to be a promising new herbal formula to prevent and treat for neurodegenerative diseases including Alzheimer's disease (AD).

  • PDF

Neuroprotective Effects of Cheongnoemyeongsin-hwan against Hydrogen Peroxide-induced DNA Damage and Apoptosis in Human Neuronal-Derived SH-SY5Y Cells (인체 신경세포에서 청뇌명신환(淸腦明神丸)의 산화적 스트레스에 대한 세포보호 효과)

  • Pi, Guk Hyun;Hwang, Won Deuk
    • Herbal Formula Science
    • /
    • v.25 no.1
    • /
    • pp.51-68
    • /
    • 2017
  • Objectives : Oxidative stress due to excessive accumulation of reactive oxygen species (ROS) is one of the risk factors for the development of several chronic diseases, including neurodegenerative diseases. Methods : In the present study, we investigated the protective effects of cheongnoemyeongsin-hwan (CNMSH) against oxidative stress‑induced cellular damage and elucidated the underlying mechanisms in neuronal-derived SH-SY5Y cells. Results : Our results revealed that treatment with CNMSH prior to hydrogen peroxide (H2O2) exposure significantly increased the SH-SY5Y cell viability, indicating that the exposure of the SH-SY5Y cells to CNMSH conferred a protective effect against oxidative stress. CNMSH also effectively attenuated H2O2‑induced comet tail formation, and decreased the phosphorylation levels of the histone ${\gamma}H2AX$, as well as the number of apoptotic bodies and Annexin V‑positive cells. In addition, CNMSH exhibited scavenging activity against intracellular ROS generation and restored the mitochondria membrane potential (MMP) loss that were induced by H2O2, suggesting that CNMSH prevents H2O2‑induced DNA damage and cell apoptosis. Moreover, H2O2 enhanced the cleavage of caspase-3 and degradation of poly (ADP-ribose)-polymerase, a typical substrate protein of activated caspase-3, as well as DNA fragmentation; however, these events were almost totally reversed by pretreatment with CNMSH. Furthermore, CNMSH increased the levels of heme oxygenase-1 (HO-1), which is a potent antioxidant enzyme, associated with the induction of nuclear factor-erythroid 2-related factor 2 (Nrf2). According to our data, CNMSH is able to protect SH-SY5Y cells from H2O2-induced apoptosis throughout blocking cellular damage related to oxidative stress through a mechanism that would affect ROS elimination and activating Nrf2/HO-1 signaling pathway. Conclusions : Therefore, we believed that CNMSH may potentially serve as an agent for the treatment and prevention of neurodegenerative diseases caused by oxidative stress.

Apoptosis in Cancer - An Update

  • Sankari, S. Leena;Masthan, K.M.K.;Babu, N. Aravindha;Bhattacharjee, Tathagata;Elumalai, M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.4873-4878
    • /
    • 2012
  • Apoptosis is programmed cell death which is essential for development and survival of living organisms. It is a sequentially regulated suicidal programme where cells activate certain enzymes which dissolute their own nuclear component and various protein component of nucleus and cytoplasm. Disturbance of this regulatory pathway may lead to various diseases like autoimmune diseases, neurodegenerative diseases and cancers. The potential mechanisms of apoptosis and its role in cancer are discussed. The ability of apoptosis to modulate the life or death of a cell is also recognized for its immense therapeutic potential. Understanding the mechanisms from this review will give us better insight to the pathogenesis of various diseases including cancer and will open new horizons to therapeutic approaches.

Antiapoptotic Fusion Protein Delivery Systems

  • Tan, Cheau Yih;Kim, Yong-Hee
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.481-488
    • /
    • 2008
  • Apoptosis is a natural cell suicide mechanism to maintain homeostasis. However, many of the diseases encountered today are caused by aberrant apoptosis where excessive apoptosis leads to neurodegenerative disorders, ischemic heart disease, autoimmune disorders, infectious diseases, etc. A variety of antiapoptotic agents have been reported to interfere with the apoptosis pathway. These agents can be potential drug candidates for the treatment or prevention of diseases caused by dysregulated apoptosis. Obviously, world-wide pharmaceutical and biotechnology companies are gearing up to develop antiapoptotic drugs with some products being commercially available. Polymeric drug delivery systems are essential to their success. Recent R&D efforts have focused on the chemical or bioconjugation of antiapoptotic proteins with the protein transduction domain (PTD) for higher cellular uptake with antibodies for specific targeting as well as with polymers to enhance the protein stability and prolonged effect with success observed both in vivo and in vitro. All these different fusion antiapoptotic proteins provide promising results for the treatment of dysregulated apoptosis diseases.

Senotherapeutics and Their Molecular Mechanism for Improving Aging

  • Park, Jooho;Shin, Dong Wook
    • Biomolecules & Therapeutics
    • /
    • v.30 no.6
    • /
    • pp.490-500
    • /
    • 2022
  • Aging is defined as physiological dysfunction of the body and a key risk factor for human diseases. During the aging process, cellular senescence occurs in response to various extrinsic and intrinsic factors such as radiation-induced DNA damage, the activation of oncogenes, and oxidative stress. These senescent cells accumulate in many tissues and exhibit diverse phenotypes, such as resistance to apoptosis, production of senescence-associated secretory phenotype, cellular flattening, and cellular hypertrophy. They also induce abnormal dysfunction of the microenvironment and damage neighboring cells, eventually causing harmful effects in the development of various chronic diseases such as diabetes, cancer, and neurodegenerative diseases. Thus, pharmacological interventions targeting senescent cells, called senotherapeutics, have been extensively studied. These senotherapeutics provide a novel strategy for extending the health span and improving age-related diseases. In this review, we discuss the current progress in understanding the molecular mechanisms of senotherapeutics and provide insights for developing senotherapeutics.

The role of tRNA-derived small RNAs in aging

  • Seokjun G. Ha;Seung-Jae V. Lee
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.49-55
    • /
    • 2023
  • Aging is characterized by a gradual decline in biological functions, leading to the increased probability of diseases and deaths in organisms. Previous studies have identified biological factors that modulate aging and lifespan, including non-coding RNAs (ncRNAs). Here, we review the relationship between aging and tRNA-derived small RNAs (tsRNAs), ncRNAs that are generated from the cleavage of tRNAs. We describe age-dependent changes in tsRNA levels and their functions in age-related diseases, such as cancer and neurodegenerative diseases. We also discuss the association of tsRNAs with aging-regulating processes, including mitochondrial respiration and reduced mRNA translation. We cover recent findings regarding the potential roles of tsRNAs in cellular senescence, a major cause of organismal aging. Overall, our review will provide useful information for understanding the roles of tsRNAs in aging and age-associated diseases.