• Title/Summary/Keyword: Neuroactive compounds

Search Result 5, Processing Time 0.021 seconds

The Effect of Neuroactive Compounds on Settlement of Pacific Oyster, Crassostrea gigas Pediveliger Larvae (굴, Crassostrea gigas 부착기 유생의 부착에 미치는 신경전달물질종의 영향)

  • Hur, Youngbaek;Jo, Qtae;Byun, Soongyu;Mun, Tesek
    • The Korean Journal of Malacology
    • /
    • v.30 no.4
    • /
    • pp.343-351
    • /
    • 2014
  • We determined the effects of neuroactive compounds known as synthetic larval settlement inducers on the settlement of the Pacific oyster C. gigas pediveliger on the larval collector. Six types of the inducers, serotonin (5-HT), ${\gamma}$-amino butyric acid (GABA), L-3,4-dihydroxyphenylalanine (L-DOPA), norepinephrine, epinephrine and methyl bromide (MB) were tested. All the chemicals induced larval settlement, MB being the most effective with settlement rate of $42.7{\pm}2.7%$, followed by GABA ($35.4{\pm}2.0%$), 5-HT ($29.1{\pm}2.2%$), L-DOPA ($19.2{\pm}2.1%$), epinephrine ($15.2{\pm}0.9%$), and norepinephrine ($11.0{\pm}1.2%$). The chemicals ${\gamma}$-amino butyric acid and methyl bromide were also better in terms of settled density on the collector with their respective density of $1.97{\pm}1.42$ and $2.37{\pm}1.86ind/cm^2$, reminiscent of being most effective candidates for a larval settlement inducer in the oyster hatchery.

The Effect of Neuroactive Compounds on Settlement of Pacific Oyster, Crassostrea gigas Pediveliger Larvae (굴 Crassostrea gigas 부착기 유생의 부착에 미치는 신경전달물질종의 영향)

  • Hur, Young Baek;Cho, Kyu Tae;Byun, Soon Gyu;Jeon, Chang Young;Cho, Kee Chae
    • The Korean Journal of Malacology
    • /
    • v.29 no.2
    • /
    • pp.139-146
    • /
    • 2013
  • We determined the effects of neuroactive compounds known as synthetic larval settlement inducers on the settlement of the Pacific oyster C. gigas pediveliger on the larval collector. Six types of the inducers, serotonin (5-HT), ${\gamma}$-amino butyric acid (GABA), L-3,4-dihydroxyphenylalanine (L-DOPA), norepinephrine, epinephrine and methyl bromide (MB) were tested. All the chemicals induced larval settlement, MB being the most effective with settlement rate of $42.7{\pm}2.7%$, followed by GABA ($35.4{\pm}2.0%$), 5-HT ($29.1{\pm}2.2%$), L-DOPA ($19.2{\pm}2.1%$), epinephrine ($15.2{\pm}0.9%$), and norepinephrine ($11.0{\pm}1.2%$). The chemicals ${\gamma}$-amino butyric acid and methyl bromide were also better in terms of settled density on the collector with their respective density of $1.97{\pm}1.42$ and $2.37{\pm}1.86\;ind/cm^2$, reminiscent of being most effective candidates for a larval settlement inducer in the oyster hatchery.

Identification of Neuroactive Constituents of the Ethyl Acetate Fraction from Cyperi Rhizoma Using Bioactivity-Guided Fractionation

  • Sim, Yeomoon;Choi, Jin Gyu;Gu, Pil Sung;Ryu, Byeol;Kim, Jeong Hee;Kang, Insug;Jang, Dae Sik;Oh, Myung Sook
    • Biomolecules & Therapeutics
    • /
    • v.24 no.4
    • /
    • pp.438-445
    • /
    • 2016
  • Cyperi Rhizoma (CR), the rhizome of Cyperus rotundus L., exhibits neuroprotective effects in in vitro and in vivo models of neuronal diseases. Nevertheless, no study has aimed at finding the neuroactive constituent(s) of CR. In this study, we identified active compounds in a CR extract (CRE) using bioactivity-guided fractionation. We first compared the anti-oxidative and neuroprotective activities of four fractions and the CRE total extract. Only the ethyl acetate (EA) fraction revealed strong activity, and further isolation from the bioactive EA fraction yielded nine constituents: scirpusin A (1), scirpusin B (2), luteolin (3), 6'-acetyl-3,6-diferuloylsucrose (4), 4',6' diacetyl-3,6-diferuloylsucrose (5), p-coumaric acid (6), ferulic acid (7), pinellic acid (8), and fulgidic acid (9). The activities of constituents 1-9 were assessed in terms of anti-oxidative, neuroprotective, anti-inflammatory, and anti-amyloid-${\beta}$ activities. Constituents 1, 2, and 3 exhibited strong activities; constituents 1 and 2 were characterized for the first time in this study. These results provide evidence for the value of CRE as a source of multi-functional neuroprotectants, and constituents 1 and 2 may represent new candidates for further development in therapeutic use against neurodegenerative diseases.

Functional Gene Analysis to Identify Potential Markers Induced by Benzene in Two Different Cell Lines, HepG2 and HL-60

  • Kim, Youn-Jung;Song, Mi-Kyung;Sarma, Sailendra Nath;Choi, Han-Saem;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.3
    • /
    • pp.183-191
    • /
    • 2008
  • Volatile organic compounds (VOCs) are common constituents of cleaning and degreasing agents, paints, pesticides, personal care products, gasoline and solvents. And VOCs are evaporated at room temperature and most of them exhibit acute and chronic toxicity to human. Benzene is the most widely used prototypical VOC and the toxic mechanisms of them are still unclear. The multi-step process of toxic mechanism can be more fully understood by characterizing gene expression changes induced in cells by toxicants. In this study, DNA microarray was used to monitor the expression levels of genes in HepG2 cells and HL-60 cells exposed to the benzene on IC20 and IC50 dose respectively. In the clustering analysis of gene expression profiles, although clusters of HepG2 and HL-60 cells by benzene were divided differently, expression pattern of many genes observed similarly. We identified 916 up-regulated genes and 1,144 down-regulated genes in HepG2 cells and also 1,002 up-regulated genes and 919 down-regulated genes in HL-60 cells. The gene ontology analysis on genes expressed by benzene in HepG2 and HL-60 cells, respectively, was performed. Thus, we found some principal pathways, such as, focal adhesion, gap junction and signaling pathway in HepG2 cells and toll-like receptor signaling pathway, MAPK signaling pathway, p53 signaling pathway and neuroactive ligand-receptor interaction in HL-60 cells. And we also found 16 up-regulated and 14 down-regulated commonly expressed total 30 genes that belong in the same biological process like inflammatory response, cell cycle arrest, cell migration, transmission of nerve impulse and cell motility in two cell lines. In conclusion, we suggest that this study is meaningful because these genes regarded as strong potential biomarkers of benzene independent of cell type.

Network pharmacology-based prediction of efficacy and mechanism of Chongmyunggongjin-dan acting on Alzheimer's disease (네트워크 약리학을 기반으로한 총명공진단(聰明供辰丹) 구성성분과 알츠하이머 타겟 유전자의 효능 및 작용기전 예측)

  • Bitna Kweon;Sumin Ryu;Dong-Uk Kim;Jin-Young Oh;Mi-Kyung Jang;Sung-Joo Park;Gi-Sang Bae
    • The Journal of Korean Medicine
    • /
    • v.44 no.2
    • /
    • pp.106-118
    • /
    • 2023
  • Objectives: Network pharmacology is a method of constructing and analyzing a drug-compound-target network to predict potential efficacy and mechanisms related to drug targets. In that large-scale analysis can be performed in a short time, it is considered a suitable tool to explore the function and role of herbal medicine. Thus, we investigated the potential functions and pathways of Chongmyunggongjin-dan (CMGJD) on Alzheimer's disease (AD) via network pharmacology analysis. Methods: Using public databases and PubChem database, compounds of CMGJD and their target genes were collected. The putative target genes of CMGJD and known target genes of AD were compared and found the correlation. Then, the network was constructed using Cytoscape 3.9.1. and functional enrichment analysis was conducted based on the Gene Ontology (GO) Biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways to predict the mechanisms. Results: The result showed that total 104 compounds and 1157 related genes were gathered from CMGJD. The network consisted of 1157nodes and 10034 edges. 859 genes were interacted with AD gene set, suggesting that the effects of CMGJD are closely related to AD. Target genes of CMGJD are considerably associated with various pathways including 'Positive regulation of chemokine production', 'Cellular response to toxic substance', 'Arachidonic acid metabolic process', 'PI3K-Akt signaling pathway', 'Metabolic pathways', 'IL-17 signaling pathway' and 'Neuroactive ligand-receptor interaction'. Conclusion: Through a network pharmacological method, CMGJD was predicted to have high relevance with AD by regulating inflammation. This study could be used as a basis for effects of CMGJD on AD.