• 제목/요약/키워드: Neuro-fuzzy control

검색결과 203건 처리시간 0.019초

An adaptive neuro-fuzzy approach using IoT data in predicting springback in ultra-thin stainless steel sheets with consideration of grain size

  • Jing Zhao;Lichun Wan;Mostafa Habibi;Ameni Brahmia
    • Advances in nano research
    • /
    • 제17권2호
    • /
    • pp.109-124
    • /
    • 2024
  • In the era of smart manufacturing, precise prediction of springback-a common issue in ultra-thin sheet metal forming- and forming limits are critical for ensuring high-quality production and minimizing waste. This paper presents a novel approach that leverages the Internet of Things (IoT) and Artificial Neural Networks (ANN) to enhance springback and forming limits prediction accuracy. By integrating IoT-enabled sensors and devices, real-time data on material properties, forming conditions, and environmental factors are collected and transmitted to a central processing unit. This data serves as the input for an ANN model, which is trained with crystal plasticity simulations and experimental data to predict springback with high precision. Our proposed system not only provides continuous monitoring and adaptive learning capabilities but also facilitates real-time decision-making in manufacturing processes. Experimental results demonstrate significant improvements in prediction accuracy compared to traditional methods, highlighting the potential of IoT and ANN integration in advancing smart manufacturing. This approach promises to revolutionize quality control and operational efficiency in the industry, paving the way for more intelligent and responsive manufacturing systems.

Designing fuzzy systems for optimal parameters of TMDs to reduce seismic response of tall buildings

  • Ramezani, Meysam;Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • 제20권1호
    • /
    • pp.61-74
    • /
    • 2017
  • One of the most reliable and simplest tools for structural vibration control in civil engineering is Tuned Mass Damper, TMD. Provided that the frequency and damping parameters of these dampers are tuned appropriately, they can reduce the vibrations of the structure through their generated inertia forces, as they vibrate continuously. To achieve the optimal parameters of TMD, many different methods have been provided so far. In old approaches, some formulas have been offered based on simplifying models and their applied loadings while novel procedures need to model structures completely in order to obtain TMD parameters. In this paper, with regard to the nonlinear decision-making of fuzzy systems and their enough ability to cope with different unreliability, a method is proposed. Furthermore, by taking advantage of both old and new methods a fuzzy system is designed to be operational and reduce uncertainties related to models and applied loads. To design fuzzy system, it is required to gain data on structures and optimum parameters of TMDs corresponding to these structures. This information is obtained through modeling MDOF systems with various numbers of stories subjected to far and near field earthquakes. The design of the fuzzy systems is performed by three methods: look-up table, the data space grid-partitioning, and clustering. After that, rule weights of Mamdani fuzzy system using the look-up table are optimized through genetic algorithm and rule weights of Sugeno fuzzy system designed based on grid-partitioning methods and clustering data are optimized through ANFIS (Adaptive Neuro-Fuzzy Inference System). By comparing these methods, it is observed that the fuzzy system technique based on data clustering has an efficient function to predict the optimal parameters of TMDs. In this method, average of errors in estimating frequency and damping ratio is close to zero. Also, standard deviation of frequency errors and damping ratio errors decrease by 78% and 4.1% respectively in comparison with the look-up table method. While, this reductions compared to the grid partitioning method are 2.2% and 1.8% respectively. In this research, TMD parameters are estimated for a 15-degree of freedom structure based on designed fuzzy system and are compared to parameters obtained from the genetic algorithm and empirical relations. The progress up to 1.9% and 2% under far-field earthquakes and 0.4% and 2.2% under near-field earthquakes is obtained in decreasing respectively roof maximum displacement and its RMS ratio through fuzzy system method compared to those obtained by empirical relations.

Quality of service management for intelligent systems

  • Lee, Sang-Hyun;Jung, Byeong-Soo;Moon, Kyung-Il
    • International journal of advanced smart convergence
    • /
    • 제3권2호
    • /
    • pp.18-21
    • /
    • 2014
  • A control application requirements currently used is very low, such as packet loss rate, minimum delay on sensor networks with quality of service (QoS) requirements some packet delivery guarantee. This paper is the sampling period at the end of the actuator and sensor data transfer related to the Miss ratio for each source sensor node, use the controller and the internal ANFIS. The proposed scheme has the advantages of simplicity, scalability, and General. Simulation results of the proposed scheme can provide QoS support in WSANs.

새로운 고장진단 기법을 이용한 불확실한 비선형 시스팀의 고장 허용 제어 (Fault Tolerant Control of Uncertain Nonlinear Systems Using New Fault Diagnosis method)

  • 황영호;송민철;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2158-2160
    • /
    • 2004
  • 본 논문에서는 불확실한 비선형 시스템에 대하여 새로운 고장진단 방법을 이용한 고장 허용 제어기를 설계한다. 잔류 신호는 비선형 관측기 구조를 이용하여 얻을 수 있다. 고장 성분은 neuro-fuzzy 근사기로 추정한다. 제안된 고장 허용 제어기는 강인 제어기와 고장 성분을 보상할 수 있는 보상제어기로 구성된다. 여기서 제안된 고장진단 방법은 고장으로 인해 발생되는 보상제어기의 크기로 고장을 진단함으로써 고장 전후의 강인 제어기의 특성을 계속유지 할 수 있게 설계하였다. 본 논문에서 제안한 고장 허용 제어기의 성능은 컴퓨터 모의실험을 통하여 증명하였다.

  • PDF

Bio-inspired self powered nervous system for civil structures

  • Shoureshi, Rahmat A.;Lim, Sun W.
    • Smart Structures and Systems
    • /
    • 제5권2호
    • /
    • pp.139-152
    • /
    • 2009
  • Globally, civil infrastructures are deteriorating at an alarming rate caused by overuse, overloading, aging, damage or failure due to natural or man-made hazards. With such a vast network of deteriorating infrastructure, there is a growing interest in continuous monitoring technologies. In order to provide a true distributed sensor and control system for civil structures, we are developing a Structural Nervous System that mimics key attributes of a human nervous system. This nervous system is made up of building blocks that are designed based on mechanoreceptors as a fundamentally new approach for the development of a structural health monitoring and diagnostic system that utilizes the recently developed piezo-fibers capable of sensing and actuation. In particular, our research has been focused on producing a sensory nervous system for civil structures by using piezo-fibers as sensory receptors, nerve fibers, neuronal pools, and spinocervical tract to the nodal and central processing units. This paper presents up to date results of our research, including the design and analysis of the structural nervous system.

Adaptive Neuro-fuzzy-based modeling of exhaust emissions from dual-fuel engine using biodiesel and producer gas

  • Prabhakar Sharma;Avdhesh Kr Sharma
    • Advances in Energy Research
    • /
    • 제8권3호
    • /
    • pp.175-184
    • /
    • 2022
  • The dual-fuel technology, which uses gaseous fuel as the main fuel and liquid as the pilot fuel, is an appealing technology for reducing the exhaust emissions. The current study proposes emission models based on ANFIS for a dual-fuel using producer gas (PG)-diesel engine. Emissions measurements were taken at different engine load levels and fuel injection timings. The proposed model predictions were examined using statistical methods. With R2 values in the range of 0.9903 to 0.9951, the established ANFIS model was found to be consistently robust in predicting emission characteristics. The mean absolute percentage deviate in range 1.9 to 4.6%, and mean squared error varies in range 0.0018 to 13.9%. The evaluation of the ANFIS model developed shows a reliable claim of intrinsic sensitivity, strength, and outstanding generalization. The presented meta-model can be used to simulate the engine's operation in order to create an efficient control tool.

Application of adaptive neuro-fuzzy system in prediction of nanoscale and grain size effects on formability

  • Nan Yang;Meldi Suhatril;Khidhair Jasim Mohammed;H. Elhosiny Ali
    • Advances in nano research
    • /
    • 제14권2호
    • /
    • pp.155-164
    • /
    • 2023
  • Grain size in sheet metals in one of the main parameters in determining formability. Grain size control in industry requires delicate process control and equipment. In the present study, effects of grain size on the formability of steel sheets is investigated. Experimental investigation of effect of grain size is a cumbersome method which due to existence of many other effective parameters are not conclusive in some cases. On the other hand, since the average grain size of a crystalline material is a statistical parameter, using traditional methods are not sufficient for find the optimum grain size to maximize formability. Therefore, design of experiment (DoE) and artificial intelligence (AI) methods are coupled together in this study to find the optimum conditions for formability in terms of grain size and to predict forming limits of sheet metals under bi-stretch loading conditions. In this regard, a set of experiment is conducted to provide initial data for training and testing DoE and AI. Afterwards, the using response surface method (RSM) optimum grain size is calculated. Moreover, trained neural network is used to predict formability in the calculated optimum condition and the results compared to the experimental results. The findings of the present study show that DoE and AI could be a great aid in the design, determination and prediction of optimum grain size for maximizing sheet formability.

Power Quality Improvement Using Hybrid Passive Filter Configuration for Wind Energy Systems

  • Kececioglu, O. Fatih;Acikgoz, Hakan;Yildiz, Ceyhun;Gani, Ahmet;Sekkeli, Mustafa
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.207-216
    • /
    • 2017
  • Wind energy conversion systems (WECS) which consist of wind turbines with permanent magnet synchronous generator (PMSG) and full-power converters have become widespread in the field of renewable power systems. Generally, conventional diode bridge rectifiers have used to obtain a constant DC bus voltage from output of PMSG based wind generator. In recent years, together advanced power electronics technology, Pulse Width Modulation (PWM) rectifiers have used in WECS. PWM rectifiers are used in many applications thanks to their characteristics such as high power factor and low harmonic distortion. In general, L, LC and LCL-type filter configurations are used in these rectifiers. These filter configurations are not exactly compensate current and voltage harmonics. This study proposes a hybrid passive filter configuration for PWM rectifiers instead of existing filters. The performance of hybrid passive filter was tested via MATLAB/Simulink environment under various operational conditions and was compared with LCL filter structure. In addition, neuro-fuzzy controller (NFC) was preferred to increase the performance of PWM rectifier in DC bus voltage control against disturbances because of its robust and nonlinear structure. The study demonstrates that the hybrid passive filter configuration proposed in this study successfully compensates current and voltage harmonics, and improves total harmonic distortion and true power factor.

클러스터링 기반 뉴로-퍼지 모델링 학습 (Neuro-Fuzzy Modeling Learning method based on Clustering)

  • 김승석;곽근창;이대종;김성수;유정웅;김주식;김용태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 춘계학술대회 학술발표 논문집 제15권 제1호
    • /
    • pp.289-292
    • /
    • 2005
  • 본 논문에서는 클러스터링과 뉴로-퍼지 모델링을 동시에 실시하는 학습 기법을 제안하였다. 클러스터링을 이용하여 뉴로-퍼지 모델링을 실시하는 일반적인 경우, 클러스터링 학습을 실시한 후 학습된 파라미터를 뉴로-퍼지 모델의 초기 파라미터로 설정하고 모델을 다시 학습하는 방법을 취한다. 즉 클러스터링에서 클러스터의 수를 구하고 파라미터를 최적화함으로써 초기 구조동정과 파라미터 동정을 실시하며 이를 다시 뉴로-퍼지 모델에서 세부적인 파라미터 동정을 실시하는 것이다. 또한 모델에서의 학습은 출력데이터의 오차를 이용한 오차미분기반 학습으로 전제부 소속함수 파라미터를 수정하는 방법을 이용한다. 이 경우 클러스터링의 영향과 모델의 영향이 각각 별개로 고려될 수 있다. 따라서 본 논문에서는 클러스터링을 전제부 소속함수로 부여하고 클러스터링의 학습에 뉴로-퍼지 모델을 이용하면서 또한 모델의 학습에 클러스터링을 직접 적용하는 클러스터링 기반 뉴로-퍼지 모델링을 제안하였으며 이 경우 클러스터링의 학습과 모델의 학습이 동시에 이루어지며 뉴로-퍼지 모델에서 클러스터링의 효과를 직접적으로 확인할 수 있다. 제안된 방법의 유용성을 시뮬레이션을 통하여 보이고자 한다.

  • PDF

Novel ANFIS based SMC with Fractional Order PID Controller for Non Linear Interacting Coupled Spherical Tank System for Level Process

  • Jegatheesh A;Agees Kumar C
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.169-177
    • /
    • 2024
  • Interacting Spherical tank has maximum storage capacity is broadly utilized in industries because of its high storage capacity. This two tank level system has the nonlinear characteristics due to its varying surface area of cross section of tank. The challenging tasks in industries is to manage the flow rate of liquid. This proposed work plays a major role in controlling the liquid level in avoidance of time delay and error. Several researchers studied and investigated about reducing the nonlinearity problem and their approaches do not provide better result. Different types of controllers with various techniques are implemented by the proposed system. Intelligent Adaptive Neuro Fuzzy Inference System (ANFIS) based Sliding Mode Controller (SMC) with Fractional order PID controller is a novel technique which is developed for a liquid level control in a interacting spherical tank system to avoid the external disturbances perform better result in terms of rise time, settling time and overshoot reduction. The performance of the proposed system is obtained by analyzing the simulation result obtained from the controller. The simulation results are obtained with the help of FOMCON toolbox with MATLAB 2018. Finally, the performance of the conventional controller (FOPID, PID-SMC) and proposed ANFIS based SMC-FOPID controllers are compared and analyzed the performance indices.