• 제목/요약/키워드: Neuro-fuzzy control

검색결과 203건 처리시간 0.026초

GMA 용접공정의 비드형상 추론기술 (The Inference System of Bead Geometry in GMAW)

  • 김면희;최영근;신현승;이문환;이태영;이상협
    • 한국산업융합학회 논문집
    • /
    • 제5권2호
    • /
    • pp.111-118
    • /
    • 2002
  • In GMAW(Gas Metal Arc Welding) processes, bead geometry (penetration, bead width and height) is a criterion to estimate welding quality, Bead geometry is affected by welding current, arc voltage and travel speed, shielding gas, CTWD (contact-tip to workpiece distance) and so on. In this paper, welding process variables were selected as welding current, arc voltage and travel speed. And bead geometry was reasoned from the chosen welding process variables using neuro-fuzzy algorithm. Neural networks was applied to design FLC(fuzzy logic control), The parameters of input membership functions and those of consequence functions in FLC were tuned through the method of learning by backpropagation algorithm, Bead geometry could he reasoned from welding current, arc voltage, travel speed on FLC using the results learned by neural networks. On the developed inference system of bead geometry using neuo-fuzzy algorithm, the inference error percent of bead width was within ${\pm}4%$, that of bead height was within ${\pm}3%$, and that of penetration was within ${\pm}8%$, Neural networks came into effect to find the parameters of input membership functions and those of consequence in FLC. Therefore the inference system of welding quality expects to be developed through proposed algorithm.

  • PDF

퍼지 논리를 이용한 로보트 매니퓰레이터의 신경 제어기 (Neuro controller of the robot manipulator using fuzzy logic)

  • 김종수;이홍기;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.866-871
    • /
    • 1991
  • The multi-layer neural network possesses the desirable characteristics of parallel distributed processing and learning capacity, by which the uncertain variation of the parameters in the dynamically complex system can be handled adoptively. However the error back propagation algorithm that has been utilized popularly in the learning procedure of the mulfi-Jayer neural network has the significant limitations in the real application because of its slow convergence speed. In this paper, an approach to improve the convergence speed is proposed using the fuzzy logic that can effectively handle the uncertain and fuzzy informations by linguistic level. The effectiveness of the proposed algorithm is demonstrated by computer simulation of PUMA 560 robot manipulator.

  • PDF

Analysis and Implementation of ANFIS-based Rotor Position Controller for BLDC Motors

  • Navaneethakkannan, C.;Sudha, M.
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.564-571
    • /
    • 2016
  • This study proposes an adaptive neuro-fuzzy inference system (ANFIS)-based rotor position controller for brushless direct current (BLDC) motors to improve the control performance of the drive under transient and steady-state conditions. The dynamic response of a BLDC motor to the proposed ANFIS controller is considered as standard reference input. The effectiveness of the proposed controller is compared with that of the proportional integral derivative (PID) controller and fuzzy PID controller. The proposed controller solves the problem of nonlinearities and uncertainties caused by the reference input changes of BLDC motors and guarantees a fast and accurate dynamic response with an outstanding steady-state performance. Furthermore, the ANFIS controller provides low torque ripples and high starting torque. The detailed study includes a MATLAB-based simulation and an experimental prototype to illustrate the feasibility of the proposed topology.

A Self-Organizing Model Based Rate Control Algorithm for MPEG-4 Video Coding

  • Zhang, Zhi-Ming;Chang, Seung-Gi;Park, Jeong-Hoon;Kim, Yong-Je
    • 대한전자공학회논문지SP
    • /
    • 제40권1호
    • /
    • pp.72-78
    • /
    • 2003
  • 본 논문에서는 자기구성 뉴로퍼지 네트워크를 이용한 MPEG-4 비트율 제어알고리즘을 제안한다. 경험적인 수식을 바탕으로 rate-distortion(RD) 모델을 구성하는 일반적인 방법과는 달리 제안하는 알고리즘의 기본적인 아이디어는 온라인으로 RD모델을 스스로 구성하고 매 프레임마다 그 구조를 적응적으로 업데이트하는 SOLPN을 이용해 RD 모델을 구현하는 것으로 많은 비트율 제어 방식 중 프레임을 기반으로 한 비트율 제어만을 본 논문에서는 고려한다. 특히 이 알고리즘은 오프라인에서 미리 트레이닝하는 것이 필요가 없기 때문에 실시간 코딩에도 적용 가능하다. VM18.0과의 비교 실험 결과들을 보면 본 논문에서 제안하는 비트율제어 알고리즘이 VMl8.0〔16〕에 비해 주관적인 화질 향상뿐만 아니라 적은 프레임 스킵(franc skip)과 높은 PSNR을 나타낸다.

터보제트엔진의 퍼지제어기 설계 및 다목적함수 만족기법을 통한 제어성능 향상에 관한 연구 (A Study on the Design of Fuzzy Controller for a Turbojet Engine Model and its Performance Enhancement through Satisfactory Multiple Objectives)

  • 한동주
    • 한국항공우주학회지
    • /
    • 제31권6호
    • /
    • pp.61-71
    • /
    • 2003
  • 터보제트엔진 모델에 대한 제어에 있어서, 비교적 잘 설계된 PI 제어기 성능결과를 바탕으로 Takagi-Sugeno형 뉴로-퍼지 추론계를 통한 플랜트 모델의 제어 시스템을 규명함으로서, PI형 T-S 퍼지규칙들을 퍼지제어기를 설계하였다. 이렇게 설계된 제어기의 성능을 향상시키기 위하여, 각 퍼지규칙들을 퍼지 C-Means Algorithm으로부터 각각의 목적 함수군으로 분류한 후, 각 분류군에 대해 규칙간의 가중치가 각 목적함수의 만족도에 부합되도록 하는 기법을 제시하였고, 이를 잘 설계된 T-S형 퍼지제어기에 적용하여 성능을 향상시킴으로써 그 유용성을 보였다.

뉴로-퍼지 제어기를 이용한 도립역진자의 각도 및 위치제어 (Control of an angle and a position of inverted pendulum system using a neuro-fuzzy controller)

  • 이근형;정슬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.151-152
    • /
    • 2008
  • 본 논문에서는 도립 역진자 시스템에서의 진자의 도립 상태를 유지하도록 하기 위하여, DSP와 FPGA를 결합하여 ANFIS 뉴로퍼지 제어기를 구현하여 실험하였다. 도립진자의 위치 추종 성능을 PID 제어기와 비교 평가하였다.

  • PDF

동적시스템 제어를 위한 다단동적 뉴로-퍼지 제어기 설계 (Design of Multi-Dynamic Neuro-Fuzzy Controller for Dynamic Systems Control)

  • 조현섭;민진경
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2007년도 춘계학술발표논문집
    • /
    • pp.150-153
    • /
    • 2007
  • The intent of this paper is to describe a neural network structure called multi dynamic neural network(MDNN), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the MDNN, are described. Computer simulations are demonstrate the effectiveness of the proposed learning using the MDNN.

  • PDF

뉴로 퍼지기법을 이용한 엘리베이터 속도패턴의 정밀 제어 (Precise Control of Elevator Speed Pattern used Neuro-Fuzzy Technique)

  • 강진현;강두영;송윤제;안태천
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.567-570
    • /
    • 2004
  • 기존의 엘리베이터 시스템은 모든 교통 상황에 대해서 고정된 속도 패턴을 사용함으로써 교통량 변화에 다양한 속도 패턴을 제공 할 수 없었다. 운송 속도와 승차감은 엘리베이터 속도 패턴을 결정하기 위한 두개의 중요한 요소이다. 기동과 정지 시에 변속 충격을 줄이기 위해서 가속과 감속 시간이 적절히 조정되어졌다. 운송능력을 향상시키기 위해서 교통량 변화에 맞추어 저크를 조정하였고 이와 같은 방법으로 6개의 속도 패턴 곡선과 엘리베이터의 속도 제어를 위해서 뉴로 퍼지 시스템을 구현하였다. 구현된 뉴로 퍼지 시스템은 2개의 입력변수와 1개의 출력을 가진 시스템이다. 전반부는 교통량의 변화를 나타내며 후반부는 입력에 대응되는 속도 패턴을 적용시켰다.

  • PDF

부하 주파수 제어에 의한 전력계통의 뉴로-퍼지제어기 설계 (Design of Neuro-Fuzzy Controller of Power Line for Load Frequency Control)

  • 이오걸;김상효
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.439-440
    • /
    • 2004
  • 전력시스템의 부하주파수제어는 전력계통운용에 있어서 가장 중요하게 다루어야 한다. 본 논문에서는 강인한 퍼지제어기를 얻고자, 다층 신경회로망을 이용하여 퍼지제어기 멤버쉽 함수의 전건부 및 후건부 파라미터들을 시스템에 알맞게 자기 조정하기 위해 최급구배법에 근거한 오차 역전파 알고리즘으로 적응 학습시킬 수 있는 뉴로-퍼지제어기의 구조 및 알고리즘을 제안하였다.

  • PDF

Communications with a Brain-wave bio-potential based computer interface

  • Choi, Kyoung-Ho;Minoru, Sasaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.46.3-46
    • /
    • 2001
  • The overall aim of this research is to develop a computer communication interface based on brain-wave bio potentials for physically disabled people. The work focuses on using EOG and EMG signals to input characters one by one using cursor movements on a GUI screen. The Cyberlink TM system is used to acquire brain waves in real time with electrodes. EMG and EOG signals are used to direct a cursor in order to select, or to click on a character on the screen. We present a novel method for automatic EOG pattern detection by using wavelet transforms with a neuro-fuzzy approach ...

  • PDF