• 제목/요약/키워드: Neuro-fuzzy algorithm

검색결과 197건 처리시간 0.082초

GA 기반 TSK 퍼지 분류기의 설계와 응용 (A Design of GA-based TSK Fuzzy Classifier and Its Application)

  • 곽근창;김승석;유정웅;김승석
    • 한국지능시스템학회논문지
    • /
    • 제11권8호
    • /
    • pp.754-759
    • /
    • 2001
  • 본 논문은 주성분분석기법, 퍼지 클러스터링, ANFIS(Adaptive Neuro-Fuzzy Inference System)와 하이브리드 GA(Hybrid Genetic Algorithm)를 이용하여 GA 기반 TSK(Takagi-Sugeno-Kang) 퍼지 분류기를 제안한다. 먼저 구조동정은 주성분분석기법을 이용하여 데이터 성분간의 상관관계가 제거하도록 입력데이터를 변환하고, FCM(Fuzzy c-means) 클러스터링과 ANFIS의 융합을 통해 초기 TSK 퍼지 분류기를 구축한다. 구축된 초기 분류기의 파라미터를 초기집단으로 발생시켜 AGA(Adaptive GA)와 RLSE(Recursive Least Square Estimate)에 의해 파라미터 동정을 수행한다. 이렇게 함으로서 퍼지 클러스터링의 효율적인 입력공간분할로 ANFIS의 문제점을 해결할 수 있고, AGA에 의해 집단의 다양성 유지와 전역적인 최적해의 수렴을 가속화할 수 있다. 마지막으로, 제안된 방법은 Iris 데이터 분류문제에 적용하여 이전의 다른 논문에 비해 좋은 성능을 보임을 알 수 있었다.

  • PDF

The Determination of Coagulant Feeding Rate in the Water Treatment Plant Using Intelligent Algorithms

  • Kim, Yong-Yeol;Jung, Hyung-Tae;Jang, Gil-Soo;Park, Chul-Hong;Kang, E-Sok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.123.2-123
    • /
    • 2001
  • It is difficult to determine the feeding rate of coagulant in the water treatment plant, due to nonlinearity, multivariables and slow response characteristics, etc. To deal with this difficulty, the neuro-fuzzy system and the genetic-fuzzy system were used in determining the feeding rate of the coagulant. The fuzzy system is excellently robust in multi-variables and nonlinear problems. Therefore it uses basic algorithm, but it is difficult to construct of the fuzzy parameter such as the rule table and the membership function, Therefore we made the neuro-fuzzy system and the genetic-fuzzy system with the fusion of learning algorithms and compared the performance of the two fuzzy systems. To apply these algorithms, we made the rule table, membership function from the actual operation data of the water treatment plant. We determined optimized feeding rate of coagulant using the fuzzy operation, and also compared ...

  • PDF

A novel Neuro Fuzzy Modeling using Gaussian Mixture Models

  • Kim, Sung-Suk;Kwak, Keun-Chang;Kim, Sung-Soo;Chun, Myung-Geun;Ryu, Jeong-Woong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.110.1-110
    • /
    • 2002
  • We propose a novel neuro-fuzzy system based on an efficient clustering method. It is a very useful method that improves the performance of a fuzzy model with small number of fuzzy rules. The fuzzy clustering methods are studied in the wide range of fuzzy modeling. One of them, the grid partition method has problem of exponentially increasing number of rules when the dimension of input or number of membership function is linearly increased. On the other hand, the Expectation Maximization algorithm is an efficient estimation for unknown parameters of the Gaussian mixture model. Here it is noted that the parameters can be used for fuzzy clustering method. In a fuzzy modeling, it is desired that...

  • PDF

뉴로-퍼지 제어기 설계 연구 (A Study on a Neuro-Fuzzy Controller Design)

  • 임정홈;정태진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2120-2122
    • /
    • 2002
  • There are several types of control systems that use fuzzy logic controller as a essential system component. The majority of research work on fuzzy PID controller focuses on the conventional two-input PI or PD type controller. However, fuzzy PID controller design is a complex task due to the involvement of a large number of parameters in defining the fuzzy rule base. In this paper we combined conventional PI type and PD type fuzzy controller and set the initial parameters of this controller from the conventional PID controller gains obtained by Ziegler-Nichols tuning or other coarse tuning methods. After that, by replacing some of these parameters with sing1e neurons and making them to be adjusted by back-propagation learning algorithm we designed a neuro-fuzzy controller which showed good performance characteristics in both computer simulation and actual application.

  • PDF

적응학습 뉴로 퍼지제어기를 이용한 유도전동기의 최대 토크 제어 (Maximum Torque Control of Induction Motor using Adaptive Learning Neuro Fuzzy Controller)

  • 고재섭;최정식;김도연;정병진;강성준;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.778_779
    • /
    • 2009
  • The maximum output torque developed by the machine is dependent on the allowable current rating and maximum voltage that the inverter can supply to the machine. Therefore, to use the inverter capacity fully, it is desirable to use the control scheme considering the voltage and current limit condition, which can yield the maximum torque per ampere over the entire speed range. The paper is proposed maximum torque control of induction motor drive using adaptive learning neuro fuzzy controller and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d, q axis current $_i_{ds}$, $i_{qs}$ for maximum torque operation is derived. The proposed control algorithm is applied to induction motor drive system controlled adaptive learning neuro fuzzy controller and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the adaptive learning neuro fuzzy controller and ANN controller.

  • PDF

뉴로퍼지추론을 이용한 재질온도응답 분류시스템의 개발 (Development of Classification System for Material Temperature Responses Using Neuro-Fuzzy Inference)

  • 유영재
    • 센서학회지
    • /
    • 제9권6호
    • /
    • pp.440-447
    • /
    • 2000
  • 본 논문에서는 곡선근사법과 뉴로퍼지 시스템의 열전도도 추론을 이용하여 대기온도의 변화에 관계없이 재질의 온도응답을 분류하기 위한 시스템을 제안한다. 재질의 온도응답은 정상상태에 도달하는데 장시간이 소요되며, 과도상태에서는 잡음을 포함하고 있기 때문에 실용화하는데 문제점이 있다. 제안하는 방법은 온도응답곡선의 과도상태만을 곡선근사법에 의해 지수함수화함으로써 단시간에 계측이 가능하고 측정중의 잡음을 없앨 수 있다. 뉴로퍼지 추론을 이용하여 임의의 대기온도 하에서 재질의 열전도도를 추론함으로써 열전도 특성의 복잡한 성질을 수학적으로 해석해야하는 문제점을 극복하였다. 이를 위해 인간의 손가락과 유사한 구조의 재질 온도응답센서를 제작하고, 하드웨어를 구현하였으며, 곡선근사화와 뉴로퍼지 알고리즘에 의한 분류 소프트웨어를 개발하였다.

  • PDF

등가회로 파라미터를 이용한 배터리 잔존 수명 평가용 뉴로 퍼지 시스템 (Neuro Fuzzy System for the Estimation of the Remaining Useful Life of the Battery Using Equivalent Circuit Parameters)

  • 이승준;고영휘;델리키첼라 칸달라 프라듐나;최우진
    • 전력전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.167-175
    • /
    • 2021
  • Reusing electric vehicle batteries after they have been retired from mobile applications is considered a feasible solution to reduce the demand for new material and electric vehicle costs. However, the evaluation of the value and the performance of second-life batteries remain a problem that should be solved for the successful application of such batteries. The present work aims to estimate the remaining useful life of Li-ion batteries through the neuro-fuzzy system with the equivalent circuit parameters obtained by Electrochemical Impedance Spectroscopy (EIS). To obtain the impedance spectra of the Li-ion battery over the life, a 18650 cylindrical cell has been aged by 1035 charge/discharge cycles. Moreover, the capacity and the parameters of the equivalent circuit of a Li-ion battery have been recorded. Then, the data are used to establish a neuro-fuzzy system to estimate the remaining useful life of the battery. The experimental results show that the developed algorithm can estimate the remaining capacity of the battery with an RMSE error of 0.841%.

뉴로-퍼지 신경망 기반 최적의 HRV특징을 이용한 우울증진단 알고리즘 (Neuro-Fuzzy Network-based Depression Diagnosis Algorithm Using Optimal Features of HRV)

  • 장진흥;전설위;임준식
    • 한국콘텐츠학회논문지
    • /
    • 제12권2호
    • /
    • pp.1-9
    • /
    • 2012
  • 본 논문은 가중 퍼지소속함수 기반 신경망 (Neural Network with Weighted Fuzzy Membership functions, NEWFM)과 심박수 변이도(Heart Rate Variability, HRV)를 이용하여 우울증 진단알고리즘을 제안하고 있다. 본 알고리즘에서 사용할 NEWFM의 입력특징을 추출하기 위해서 주파수도메인 특징추출, 시간도메인 특징추출, 웨이블릿변환 특징추출, 포인케어변환 특징추출 방법을 이용하여 22개의 초기 HRV 특징들을 추출하였다. 또한 NEWFM에서 제공하는 비중복면적 분산측정법 (Non-overlap Area Distribution Measurement, NADM)에 의해 입력특징의 중요도를 평가하여 22개의 초기특징으로부터 중요도가 가장 높은 6개 최적입력특징을 선택하였다. 이 6개 특징을 이용하여 우울증을 진단한 결과는 95.8% 의 정확도를 나타내었다.

Neuro-Fuzzy 추론 시스템을 이용한 유고검지 알고리즘 연구 (Study on Incident Detection Algorithm using Neuro-Fuzzy Inference System)

  • 홍남관;최진우;이승헌;양영규
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.1234-1239
    • /
    • 2006
  • 신속하고 정확한 교통정보 서비스의 제공은 원활한 교통소통을 위하여 필수적인 요소이다. 특히, 교통사고, 도로보수 그리고 자연재해와 같은 유고가 발생할 경우, 운전자에게 즉시 통보해주어 우회할 수 있도록 조치하는 것이 필요하다. 이를 위하여 다양한 교통정보 수집기에서 수집된 교통정보를 바탕으로 실시간으로 유고상황을 판별하는 연구가 많이 진행되고 있다. 유고상황 분석은 다양한 환경요인으로 인해 판별이 어렵고, 최근에 활용되고 있는 인공지능 기법은 검지에 드는 시간 비용이 많다는 문제를 가지고 있다. 본 연구에서는 과거에 발생한 각종 돌발 상황을 분석하여 실시간으로 유고상황을 검지하는 것이 목적이다. 유고검지를 위해 GPS를 탑재한 probe car에서 수집된 차량속도와 온라인으로 제보된 유고정보를 ANFIS를 이용하여 분석 후 유고상태를 판별한다. 본 연구를 통해 실시간 도로 이용자들이 유고 발생 지역의 정보를 제공받고 그 상황에 신속하게 대처하게 함으로써 교통 혼잡 완화에 기여할 것으로 기대한다.

  • PDF

The Design of Fuzzy Controller by Means of Genetic Optimization and Estimation Algorithms

  • Oh, Sung-Kwun;Rho, Seok-Beom
    • KIEE International Transaction on Systems and Control
    • /
    • 제12D권1호
    • /
    • pp.17-26
    • /
    • 2002
  • In this paper, a new design methodology of the fuzzy controller is presented. The performance of the fuzzy controller is sensitive to the variety of scaling factors. The design procedure is based on evolutionary computing (more specifically, a genetic algorithm) and estimation algorithm to adjust and estimate scaling factors respectively. The tuning of the soiling factors of the fuzzy controller is essential to the entire optimization process. And then we estimate scaling factors of the fuzzy controller by means of two types of estimation algorithms such as HCM (Hard C-Means) and Neuro-Fuzzy model[7]. The validity and effectiveness of the proposed estimation algorithm for the fuzzy controller are demonstrated by the inverted pendulum system.

  • PDF