• Title/Summary/Keyword: Neuro-fuzzy Algorithm

Search Result 197, Processing Time 0.019 seconds

EM Algorithm based Neuro-Fuzzy Modeling (EM알고리즘을 기반으로 한 뉴로-퍼지 모델링)

  • Kim, Seoung-Suk;Jun, Beung-Suk;Kim, Ju-Sik;Ryu, Jeoung-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2846-2849
    • /
    • 2002
  • 본 논문은 뉴로-퍼지 시스템에서의 규칙 선택 및 모델 학술에 대하여 EM 알고리즘을 기반으로 하는 구조 동정을 제안한다. 뉴로-퍼지 모델링에서의 초기 파라미터가 학습과정에서의 모델 성능에 큰 영향을 주고 있다. 주어진 데이터에 근거한 파라미터 추정에는 다양한 방법들이 소개되고 응용되어져 왔는데 이전 연구들에서 볼 수 있는 HCM, FCM 등은 데이터와의 유클리디언 거리를 최소화하는 중심점을 파라미터로 선택하는 등의 방법과 퍼지 균등화 등은 데이터의 확률 밀도함수를 이용하여 파라미터를 추정하였다. 제안된 방법에서는 데이터에서의 Maximum Likelihood Estimator를 기반으로 하는 방법으로 EM 알고리즘을 이용하였다. 초기 파라미터의 결정에서 EM 알고리즘을 이용하여 뉴로-퍼지 모델의 전제부 소속함수 파라미터 추정을 실시한다. EM 알고리즘을 이용한 퍼지 모델의 특징으로는 전제부가 클러스터링에 의하여 생성되므로 입력의 차원이나 소속함수의 수가 증가하여도 규칙의 수는 증가하지 않는다. 이를 자동차 MPG 예제를 통하여 제안된 방법의 유용성을 보이고자 한다.

  • PDF

Dynamic ATC Computation for Real-Time Power Markets

  • Venkaiah, Ch.;Kumar, D.M. Vinod;Murali, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.209-219
    • /
    • 2010
  • In this paper, a novel dynamic available transfer capability (DATC) has been computed for real time applications using three different intelligent techniques viz. i) back propagation algorithm (BPA), ii) radial basis function (RBF), and iii) adaptive neuro fuzzy inference system (ANFIS) for the first time. The conventional method of DATC is tedious and time consuming. DATC is concerned with calculating the maximum increase in point to point transfer such that the transient response remains stable and viable. The ATC information is to be continuously updated in real time and made available to market participants through an internet based Open Access Same time Information System (OASIS). The independent system operator (ISO) evaluates the transaction in real time on the basis of DATC information. The dynamic contingency screening method [1] has been utilized and critical contingencies are selected for the computation of DATC using the energy function based potential energy boundary surface (PEBS) method. The PEBS based DATC has been utilized to generate patterns for the intelligent techniques. The three different intelligent methods are tested on New England 68-bus 16 machine and 39-bus 10 machine systems and results are compared with the conventional PEBS method.

Predicting the shear strength parameters of rock: A comprehensive intelligent approach

  • Fattahi, Hadi;Hasanipanah, Mahdi
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.511-525
    • /
    • 2021
  • In the design of underground excavation, the shear strength (SS) is a key characteristic. It describes the way the rock material resists the shear stress-induced deformations. In general, the measurement of the parameters related to rock shear strength is done through laboratory experiments, which are costly, damaging, and time-consuming. Add to this the difficulty of preparing core samples of acceptable quality, particularly in case of highly weathered and fractured rock. This study applies rock index test to the indirect measurement of the SS parameters of shale. For this aim, two efficient artificial intelligence methods, namely (1) adaptive neuro-fuzzy inference system (ANFIS) implemented by subtractive clustering method (SCM) and (2) support vector regression (SVR) optimized by Harmony Search (HS) algorithm, are proposed. Note that, it is the first work that predicts the SS parameters of shale through ANFIS-SCM and SVR-HS hybrid models. In modeling processes of ANFIS-SCM and SVR-HS, the results obtained from the rock index tests were set as inputs, while the SS parameters were set as outputs. By reviewing the obtained results, it was found that both ANFIS-SCM and SVR-HS models can provide acceptable predictions for interlocking and friction angle parameters, however, ANFIS-SCM showed a better generalization capability.

Pattern Recognition Improvement of an Ultrasonic Sensor System Using Neuro-Fuzzy Signal Processing (초음파센서 시스템의 패턴인식 개선을 위한 뉴로퍼지 신호처리)

  • Na, Seung-You;Park, Min-Sang
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.17-26
    • /
    • 1998
  • Ultrasonic sensors are widely used in various applications due to advantages of low cost, simplicity in construction, mechanical robustness, and little environmental restriction in usage. But for the application of object recognition, ultrasonic sensors exhibit several shortcomings of poor directionality which results in low spatial resolution of objects, and specularity which gives frequent erroneous range readings. The time-of-flight(TOF) method generally used for distance measurement can not distinguish small object patterns of plane, corner or edge. To resolve the problem, an increased number of the sensors in the forms of a linear array or 2-dimensional array of the sensors has been used. Also better resolution has been obtained by shifting the array in several steps using mechanical actuators. Also simple patterns are classified based on analyzing signal reflections. In this paper we propose a method of a sensor array system with improved capability in pattern distinction using electronic circuits accompanying the sensor array, and intelligent algorithm based on neuro-fuzzy processing of data fusion. The circuit changes transmitter output voltages of array elements in several steps. A set of different return signals from neighborhood sensors is manipulated to provide enhanced pattern recognition in the aspects of inclination angle, size and shift as well as distance of objects. The results show improved resolution of the measurements for smaller targets.

  • PDF

Design of Optimized Type-2 Fuzzy RBFNN Echo Pattern Classifier Using Meterological Radar Data (기상레이더를 이용한 최적화된 Type-2 퍼지 RBFNN 에코 패턴분류기 설계)

  • Song, Chan-Seok;Lee, Seung-Chul;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.922-934
    • /
    • 2015
  • In this paper, The classification between precipitation echo(PRE) and non-precipitation echo(N-PRE) (including ground echo and clear echo) is carried out from weather radar data using neuro-fuzzy algorithm. In order to classify between PRE and N-PRE, Input variables are built up through characteristic analysis of radar data. First, the event classifier as the first classification step is designed to classify precipitation event and non-precipitation event using input variables of RBFNNs such as DZ, DZ of Frequency(DZ_FR), SDZ, SDZ of Frequency(SDZ_FR), VGZ, VGZ of Frequency(VGZ_FR). After the event classification, in the precipitation event including non-precipitation echo, the non-precipitation echo is completely removed by the echo classifier of the second classifier step that is built as Type-2 FCM based RBFNNs. Also, parameters of classification system are acquired for effective performance using PSO(Particle Swarm Optimization). The performance results of the proposed echo classifier are compared with CZ. In the sequel, the proposed model architectures which use event classifier as well as the echo classifier of Interval Type-2 FCM based RBFNN show the superiority of output performance when compared with the conventional echo classifier based on RBFNN.

Design of Heavy Rain Advisory Decision Model Based on Optimized RBFNNs Using KLAPS Reanalysis Data (KLAPS 재분석 자료를 이용한 진화최적화 RBFNNs 기반 호우특보 판별 모델 설계)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Lee, Yong-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.473-478
    • /
    • 2013
  • In this paper, we develop the Heavy Rain Advisory Decision Model based on intelligent neuro-fuzzy algorithm RBFNNs by using KLAPS(Korea Local Analysis and Prediction System) Reanalysis data. the prediction ability of existing heavy rainfall forecasting systems is usually affected by the processing techniques of meteorological data. In this study, we introduce the heavy rain forecast method using the pre-processing techniques of meteorological data are in order to improve these drawbacks of conventional system. The pre-processing techniques of meteorological data are designed by using point conversion, cumulative precipitation generation, time series data processing and heavy rain warning extraction methods based on KLAPS data. Finally, the proposed system forecasts cumulative rainfall for six hours after future t(t=1,2,3) hours and offers information to determine heavy rain advisory. The essential parameters of the proposed model such as polynomial order, the number of rules, and fuzzification coefficient are optimized by means of Differential Evolution.

Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns

  • Liu, Chanjuan;Wu, Xinling;Wakil, Karzan;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Alyousef, Rayed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.743-767
    • /
    • 2020
  • Due to the impressive flexural performance, enhanced compressive strength and more constrained crack propagation, Fibre-reinforced concrete (FRC) have been widely employed in the construction application. Majority of experimental studies have focused on the seismic behavior of FRC columns. Based on the valid experimental data obtained from the previous studies, the current study has evaluated the seismic response and compressive strength of FRC rectangular columns while following hybrid metaheuristic techniques. Due to the non-linearity of seismic data, Adaptive neuro-fuzzy inference system (ANFIS) has been incorporated with metaheuristic algorithms. 317 different datasets from FRC column tests has been applied as one database in order to determine the most influential factor on the ultimate strengths of FRC rectangular columns subjected to the simulated seismic loading. ANFIS has been used with the incorporation of Particle Swarm Optimization (PSO) and Genetic algorithm (GA). For the analysis of the attained results, Extreme learning machine (ELM) as an authentic prediction method has been concurrently used. The variable selection procedure is to choose the most dominant parameters affecting the ultimate strengths of FRC rectangular columns subjected to simulated seismic loading. Accordingly, the results have shown that ANFIS-PSO has successfully predicted the seismic lateral load with R2 = 0.857 and 0.902 for the test and train phase, respectively, nominated as the lateral load prediction estimator. On the other hand, in case of compressive strength prediction, ELM is to predict the compressive strength with R2 = 0.657 and 0.862 for test and train phase, respectively. The results have shown that the seismic lateral force trend is more predictable than the compressive strength of FRC rectangular columns, in which the best results belong to the lateral force prediction. Compressive strength prediction has illustrated a significant deviation above 40 Mpa which could be related to the considerable non-linearity and possible empirical shortcomings. Finally, employing ANFIS-GA and ANFIS-PSO techniques to evaluate the seismic response of FRC are a promising reliable approach to be replaced for high cost and time-consuming experimental tests.