• 제목/요약/키워드: NeuralNet

Search Result 766, Processing Time 0.026 seconds

Applied Neural Net to Implementation of Influence Diagram Model Based Decision Class Analysis (영향도에 기초한 의사결정유형분석 구현을 위한 신경망 응용)

  • Park, Kyung-Sam;Kim, Jae-Kyeong;Yun, Hyung-Je
    • Asia pacific journal of information systems
    • /
    • v.7 no.1
    • /
    • pp.99-111
    • /
    • 1997
  • This paper presents an application of an artificial neural net to the implementation of decision class analysis (DCA), together with the generation of a decision model influence diagram. The diagram is well-known as a good tool for knowledge representation of complex decision problems. Generating influence diagram model is known to in practice require much time and effort, and the resulting model can be generally applicable to only a specific decision problem. In order to reduce the burden of modeling decision problems, the concept of DCA is introduced. DCA treats a set of decision problems having some degree of similarityz as a single unit. We propose a method utilizing a feedforward neural net with supervised learning rule to develop DCA based on influence diagram, which method consists of two phases: Phase l is to search for relevant chance and value nodes of an individual influence diagram from given decision and specific situations and Phase II elicits arcs among the nodes in the diagram. We also examine the results of neural net simulation with an example of a class of decision problems.

  • PDF

On Learning of HMM-Net Classifiers Using Hybrid Methods (하이브리드법에 의한 HMM-Net 분류기의 학습)

  • 김상운;신성효
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1273-1276
    • /
    • 1998
  • The HMM-Net is an architecture for a neural network that implements a hidden Markov model (HMM). The architecture is developed for the purpose of combining the discriminant power of neural networks with the time-domain modeling capability of HMMs. Criteria used for learning HMM-Net classifiers are maximum likelihood (ML), maximum mutual information (MMI), and minimization of mean squared error(MMSE). In this paper we propose an efficient learning method of HMM-Net classifiers using hybrid criteria, ML/MMSE and MMI/MMSE, and report the results of an experimental study comparing the performance of HMM-Net classifiers trained by the gradient descent algorithm with the above criteria. Experimental results for the isolated numeric digits from /0/ to /9/ show that the performance of the proposed method is better than the others in the respects of learning and recognition rates.

  • PDF

An efficient learning method of HMM-Net classifiers (HMM-Net 분류기의 효율적인 학습법)

  • 김상운;김탁령
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.933-935
    • /
    • 1998
  • The HMM-Net is an architecture for a neural network that implements a hidden markov model (HMM). The architecture is developed for the purpose of combining the discriminant power of neural networks with the time-domain modeling capability of HMMs. Criteria used for learning HMM-Net classifiers are maximum likelihood(ML) and minimization of mean squared error(MMSE). In this paper we propose an efficient learning method of HMM_Net classifiers using a ML-MMSE hybrid criterion and report the results of an experimental study comparing the performance of HMM_Net classifiers trained by the gradient descent algorithm with the above criteria. Experimental results for the isolated numeric digits from /0/ to /9/ show that the performance of the proposed method is better than the others in the repects of learning and recognition rates.

  • PDF

Application of Convolution Neural Network to Flare Forecasting using solar full disk images

  • Yi, Kangwoo;Moon, Yong-Jae;Park, Eunsu;Shin, Seulki
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.60.1-60.1
    • /
    • 2017
  • In this study we apply Convolution Neural Network(CNN) to solar flare occurrence prediction with various parameter options using the 00:00 UT MDI images from 1996 to 2010 (total 4962 images). We assume that only X, M and C class flares correspond to "flare occurrence" and the others to "non-flare". We have attempted to look for the best options for the models with two CNN pre-trained models (AlexNet and GoogLeNet), by modifying training images and changing hyper parameters. Our major results from this study are as follows. First, the flare occurrence predictions are relatively good with about 80 % accuracies. Second, both flare prediction models based on AlexNet and GoogLeNet have similar results but AlexNet is faster than GoogLeNet. Third, modifying the training images to reduce the projection effect is not effective. Fourth, skill scores of our flare occurrence model are mostly better than those of the previous models.

  • PDF

Detection of PCB Components Using Deep Neural Nets (심층신경망을 이용한 PCB 부품의 검지 및 인식)

  • Cho, Tai-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.11-15
    • /
    • 2020
  • In a typical initial setup of a PCB component inspection system, operators should manually input various information such as category, position, and inspection area for each component to be inspected, thus causing much inconvenience and longer setup time. Although there are many deep learning based object detectors, RetinaNet is regarded as one of best object detectors currently available. In this paper, a method using an extended RetinaNet is proposed that automatically detects its component category and position for each component mounted on PCBs from a high-resolution color input image. We extended the basic RetinaNet feature pyramid network by adding a feature pyramid layer having higher spatial resolution to the basic feature pyramid. It was demonstrated by experiments that the extended RetinaNet can detect successfully very small components that could be missed by the basic RetinaNet. Using the proposed method could enable automatic generation of inspection areas, thus considerably reducing the setup time of PCB component inspection systems.

A novel MobileNet with selective depth multiplier to compromise complexity and accuracy

  • Chan Yung Kim;Kwi Seob Um;Seo Weon Heo
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.666-677
    • /
    • 2023
  • In the last few years, convolutional neural networks (CNNs) have demonstrated good performance while solving various computer vision problems. However, since CNNs exhibit high computational complexity, signal processing is performed on the server side. To reduce the computational complexity of CNNs for edge computing, a lightweight algorithm, such as a MobileNet, is proposed. Although MobileNet is lighter than other CNN models, it commonly achieves lower classification accuracy. Hence, to find a balance between complexity and accuracy, additional hyperparameters for adjusting the size of the model have recently been proposed. However, significantly increasing the number of parameters makes models dense and unsuitable for devices with limited computational resources. In this study, we propose a novel MobileNet architecture, in which the number of parameters is adaptively increased according to the importance of feature maps. We show that our proposed network achieves better classification accuracy with fewer parameters than the conventional MobileNet.

Neural Net Agent for Distributed Information Retrieval (분산 정보 검색을 위한 신경망 에이전트)

  • Choi, Yong-S
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.10
    • /
    • pp.773-784
    • /
    • 2001
  • Since documents on the Web are naturally partitioned into may document database, the efficient information retrieval process requires identifying the document database that are most likely to provide relevant documents to the query and then querying the identified document database. We propose a neural net agent approach to such an efficient information retrieval. First, we present a neural net agent that learns about underlying document database using the relevance feedbacks obtained from many retrieval experiences. For a given query, the neural net agent, which is sufficiently trained on the basis of the BPN learning mechanism, discovers the document database associated with the relevant documents and retrieves those documents effectively. In the experiment, we introduce a neural net agent based information retrieval system and evaluate its performance by comparing experimental results to those of the conventional well-known approaches.

  • PDF

Radar rainfall prediction based on deep learning considering temporal consistency (시간 연속성을 고려한 딥러닝 기반 레이더 강우예측)

  • Shin, Hongjoon;Yoon, Seongsim;Choi, Jaemin
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.5
    • /
    • pp.301-309
    • /
    • 2021
  • In this study, we tried to improve the performance of the existing U-net-based deep learning rainfall prediction model, which can weaken the meaning of time series order. For this, ConvLSTM2D U-Net structure model considering temporal consistency of data was applied, and we evaluated accuracy of the ConvLSTM2D U-Net model using a RainNet model and an extrapolation-based advection model. In addition, we tried to improve the uncertainty in the model training process by performing learning not only with a single model but also with 10 ensemble models. The trained neural network rainfall prediction model was optimized to generate 10-minute advance prediction data using four consecutive data of the past 30 minutes from the present. The results of deep learning rainfall prediction models are difficult to identify schematically distinct differences, but with ConvLSTM2D U-Net, the magnitude of the prediction error is the smallest and the location of rainfall is relatively accurate. In particular, the ensemble ConvLSTM2D U-Net showed high CSI, low MAE, and a narrow error range, and predicted rainfall more accurately and stable prediction performance than other models. However, the prediction performance for a specific point was very low compared to the prediction performance for the entire area, and the deep learning rainfall prediction model also had limitations. Through this study, it was confirmed that the ConvLSTM2D U-Net neural network structure to account for the change of time could increase the prediction accuracy, but there is still a limitation of the convolution deep neural network model due to spatial smoothing in the strong rainfall region or detailed rainfall prediction.

Streamlined GoogLeNet Algorithm Based on CNN for Korean Character Recognition (한글 인식을 위한 CNN 기반의 간소화된 GoogLeNet 알고리즘 연구)

  • Kim, Yeon-gyu;Cha, Eui-young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1657-1665
    • /
    • 2016
  • Various fields are being researched through Deep Learning using CNN(Convolutional Neural Network) and these researches show excellent performance in the image recognition. In this paper, we provide streamlined GoogLeNet of CNN architecture that is capable of learning a large-scale Korean character database. The experimental data used in this paper is PHD08 that is the large-scale of Korean character database. PHD08 has 2,187 samples for each character and there are 2,350 Korean characters that make total 5,139,450 sample data. As a training result, streamlined GoogLeNet showed over 99% of test accuracy at PHD08. Also, we made additional Korean character data that have fonts that are not in the PHD08 in order to ensure objectivity and we compared the performance of classification between streamlined GoogLeNet and other OCR programs. While other OCR programs showed a classification success rate of 66.95% to 83.16%, streamlined GoogLeNet showed 89.14% of the classification success rate that is higher than other OCR program's rate.

A Neural Net System Self-organizing the Distributed Concepts for Speech Recognition (음성인식을 위한 분산개념을 자율조직하는 신경회로망시스템)

  • Kim, Sung-Suk;Lee, Tai-Ho
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.5
    • /
    • pp.85-91
    • /
    • 1989
  • In this paper, we propose a neural net system for speech recognition, which is composed of two neural networks. Firstly the self-supervised BP(Back Propagation) network generates the distributed concept corresponding to the activity pattern in the hidden units. And then the self-organizing neural network forms a concept map which directly displays the similarity relations between concepts. By doing the above, the difficulty in learning the conventional BP network is solved and the weak side of BP falling into a pattern matcher is gone, while the strong point of generating the various internal representations is used. And we have obtained the concept map which is more orderly than the Kohonen's SOFM. The proposed neural net system needs not any special preprocessing and has a self-learning ability.

  • PDF