• 제목/요약/키워드: Neural-Network Controller

검색결과 1,126건 처리시간 0.037초

HAI 제어기에 의한 유도전동기 드라이브의 고성능 제어 (High Performance of Induction Motor Drive with HAl Controller)

  • 남수명;최정식;고재섭;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.570-572
    • /
    • 2005
  • This paper is proposed adaptive hybrid artificial intelligent(HAI) controller for high performance of induction motor drive. The design of this algorithm based on fuzzy-neural network(FNN) controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF

신경망을 이용한 비선형 동적 시스템의 최적 제어에 관한 연구 (An Neural Network Direct Controller For Nonlinear Systems)

  • 전정채;이형충;유인호;김희숙
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2498-2500
    • /
    • 2004
  • In this paper, a direct controller for nonlinear plants using a neural network is presented. The controller is composed of an approximate controller and a neural network auxiliary controller. The approximate controller gives the rough control and the neural network controller gives the complementary signal to further reduce the output tracking error. This method does not put too much restriction on the type of nonlinear plant to be controlled. In this method, a RBF neural network is trained and the system has a stable performance for the inputs it has been trained for. Simulation results show that it is very effective and can realize a satisfactory control of the nonlinear system.

  • PDF

PID-신경망 제어기를 이용한 rotary inverted pendulum 제어 (Rotary inverted pendulum control using PID-neural network controller)

  • 선권석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.901-904
    • /
    • 1998
  • In this paper, we describes PID-neural network controller for the rotary inverted pendulum. PID control is applied to many fields but has some problems in nonlinear system due to a variation of parameter. So, we should desing the controller which is adjusted PI parameters by the neural network which is learned by backpropagation algorithm. And we show that on-line control is possible through the PID-neural network controller. The angle of the pendulum is controlled and then the position of the rotating arm is also controlled to maintain with in the set point. Measurement of the pendulum angle is obtained using a potentionmeter. The objective of the experiment is to design a PID-neural network control system that positions the arm as well as maintains the ivnerted pendulum vertical. Finally, we describe the actual experiment system and confirm the experimental results.

  • PDF

퍼지 보상기를 사용한 리커런트 시간지연 신경망 제어기 설계 및 구현 (Design and Implementation of Recurrent Time Delayed Neural Network Controller Using Fuzzy Compensator)

  • 이상윤;신위재
    • 한국지능시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.334-341
    • /
    • 2003
  • 본 논문에서는 신경망제어기의 출력을 보상하는 퍼지보상기를 갖는 리커런트 시간 지연 신경망(RTDNN) 제어기를 제안하였다. 학습이 완료된 신경망제어기를 사용하더라도 예상치 못한 외란으로 인해 플랜트의 출력이 좋지 못한 경우가 있는데, 이것을 적절하게 조절해 주기 위해 퍼지보상기를 사용하여 원하는 결과를 얻을 수 있도록 하였다. 그리고 플랜트의 역모델 신경망을 학습시킨 결과를 이용하여 주 신경망의 가중치를 변경시킴으로서 원하는 플랜트의 동적 특성을 얻게 된다. 2차 플랜트를 통한 모의실험 결과가 시간 지연 신경망(TDNN)제어기보다 더 좋은 응답 특성을 가짐을 확인할 수 있다. 제안한 제어기의 성능을 확인하기 위해 유압 서보시스템을 대상으로 DSP 프로세서를 사용하여 구현한 후 실험결과를 통하여 제안된 방법의 유용성을 보였다.

퍼지-신경망 제어기를 이용한 2지역 계통의 부하주파수제어에 관한연구 (A Study on the Load Frequency Control of 2-Area Power System using Fuzzy-Neural Network Controller)

  • 정형환;김상효;주석민;이정필;이동철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권2호
    • /
    • pp.97-106
    • /
    • 1999
  • This paper proposes the structure and the algorithm of the Fuzzy-Neural Controller(FNNC) which is able to adapt itself to unknown plant and the change of circumstances at the Fuzzy Logic Controller(FLC) with the Neural Network. This Learning Fuzzy Logic Controller is made up of Fuzzy Logic controller in charge of a main role and Neural Network of an adaptation in variable circumstances. This construct optimal fuzzy controller applied to the 2-area load frequency control of power system, and then it would examine fitness about parameter variation of plant or variation of circumstances. And it proposes the optimal Scale factor method wsint three preformance functions( E, , U) of system dynamics of load frequency control with error back-propagation learning algorithm. Applying the controller to the model of load frequency control, it is shown that the FNNC method has better rapidity for load disturbance, reduces load frequency maximum deviation and tie line power flow deviation and minimizes reaching and settling time compared to the Optimal Fuzzy Logic Controller(OFLC) and the Optimal Control for optimzation of performance index in past control techniques.

  • PDF

신경회로망 학습이득 알고리즘을 이용한 자율적응 시스템 구현 (Implementation of Self-Adaptative System using Algorithm of Neural Network Learning Gain)

  • 이성수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1868-1870
    • /
    • 2006
  • Neural network is used in many fields of control systems, but input-output patterns of a control system are not easy to be obtained and by using as single feedback neural network controller. And also it is difficult to get a satisfied performance when the changes of rapid load and disturbance are applied. To resolve those problems, this paper proposes a new algorithm which is the neural network controller. The new algorithm uses the neural network instead of activation function to control object at the output node. Therefore, control object is composed of neural network controller unifying activation function, and it supplies the error back propagation path to calculate the error at the output node. As a result, the input-output pattern problem of the controller which is resigned by the simple structure of neural network is solved, and real-time learning can be possible in general back propagation algorithm. Application of the new algorithm of neural network controller gives excellent performance for initial and tracking response and it shows the robust performance for rapid load change and disturbance. The proposed control algorithm is implemented on a high speed DSP, TMS320C32, for the speed of 3-phase induction motor. Enhanced performance is shown in the test of the speed control.

  • PDF

다층 신경회로망을 이용한 유연성 로보트팔의 위치제어 (Position Control of a One-Link Flexible Arm Using Multi-Layer Neural Network)

  • 김병섭;심귀보;이홍기;전홍태
    • 전자공학회논문지B
    • /
    • 제29B권1호
    • /
    • pp.58-66
    • /
    • 1992
  • This paper proposes a neuro-controller for position control of one-link flexible robot arm. Basically the controller consists of a multi-layer neural network and a conventional PD controller. Two controller are parallelly connected. Neural network is traind by the conventional error back propagation learning rules. During learning period, the weights of neural network are adjusted to minimize the position error between the desired hub angle and the actual one. Finally the effectiveness of the proposed approach will be demonstrated by computer simulation.

  • PDF

신경망을 이용한 비선형 시스템의 직접 제어 (Direct Controller for Nonlinear System Using a Neural Network)

  • 배철수
    • 한국산학기술학회논문지
    • /
    • 제14권12호
    • /
    • pp.6484-6487
    • /
    • 2013
  • 본 논문은 비선형 동적 신경망을 이용한 직접 제어에 관한 연구이다. 제어기는 근사화 제어와 신경망 보조제어 입력으로 구성되어 있다. 신경망 제어 입력은 출력 추적 오차를 더 줄이기 위해 보완 신호를 제공한다. 이 방법은 제어할 비선형 시스템의 종류에 많은 제한을 두지 않기 때문에 RBF 신경망을 이용하여 입력에 대해 안정적인 성능을 가지고 있다. 시뮬레이션 결과는 매우 효과적이며 비선형 시스템의 만족스러운 학습 성능을 증명하였다.

신경회로망 PI를 이용한 IPMSM의 고성능 속도제어 (High Performance Speed Control of IPMSM using Neural Network PI)

  • 이정호;최정식;고재섭;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2006년도 춘계학술대회 논문집
    • /
    • pp.315-320
    • /
    • 2006
  • This paper presents speed control of IPMSM drive using neural network(NN) PI controller. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness of fixed gain PI controller, NNPI controller proposes a new method based neural network. NNPI controller is developed to minimize overshoot, rise time and settling time following sudden parameter changes such as speed, load torque and inertia. Also, this paper is proposed speed control of IPMSM using neural network and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fired gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF

신경회로망을 이용한 비선형 시스템 제어의 실험적 연구 (Experimental Studies of neural Network Control Technique for Nonlinear Systems)

  • 정슬;임선빈
    • 제어로봇시스템학회논문지
    • /
    • 제7권11호
    • /
    • pp.918-926
    • /
    • 2001
  • In this paper, intelligent control method using neural network as a nonlinear controller is presented. Simulation studies for three link rotary robot are performed. Neural network controller is implemented on DSP board in PC to make real time computing possible. On-line training algorithms for neural network control are proposed. As a test-bed, a large x-y table was build and interface with PC has been implemented. Experiments such as inverted pendulum control and large x-y table position control are performed. The results for different PD controller gains with neural network show excellent position tracking for circular trajectory compared with those for PD controller only. Neural control scheme also works better for controlling inverted pendulum on x-y table.

  • PDF