• Title/Summary/Keyword: Neural-Network

Search Result 11,647, Processing Time 0.04 seconds

Classification Performance Improvement of Steam Generator Tube Defects in Nuclear Power Plant Using Bagging Method (Bagging 방법을 이용한 원전SG 세관 결함패턴 분류성능 향상기법)

  • Lee, Jun-Po;Jo, Nam-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2532-2537
    • /
    • 2009
  • For defect characterization in steam generator tubes in nuclear power plant, artificial neural network has been extensively used to classify defect types. In this paper, we study the effectiveness of Bagging for improving the performance of neural network for the classification of tube defects. Bagging is a method that combines outputs of many neural networks that were trained separately with different training data set. By varying the number of neurons in the hidden layer, we carry out computer simulations in order to compare the classification performance of bagging neural network and single neural network. From the experiments, we found that the performance of bagging neural network is superior to the average performance of single neural network in most cases.

Implementation of a Feed-Forward Neural Network on an FPGA Chip for Classification of Nonlinear Patterns (비선형 패턴 분류를 위한 FPGA를 이용한 신경회로망 시스템 구현)

  • Lee, Woon-Kyu;Kim, Jeong-Seob;Jung, Seul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.1
    • /
    • pp.20-27
    • /
    • 2008
  • In this paper, a nonlinear classifier of a feed-forward neural network is implemented on an FPGA chip. The feedforward neural network is implemented in hardware for fast parallel processing. After off line training of neural network, weight values are saved and used to perform forward propagation of neural processing. As an example, AND and XOR digital logic classification is conducted in off line, and then weight values are used in neural network. Experiments are conducted successfully and confirmed that the FPGA neural network hardware works well.

Graph Convolutional - Network Architecture Search : Network architecture search Using Graph Convolution Neural Networks (그래프 합성곱-신경망 구조 탐색 : 그래프 합성곱 신경망을 이용한 신경망 구조 탐색)

  • Su-Youn Choi;Jong-Youel Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.649-654
    • /
    • 2023
  • This paper proposes the design of a neural network structure search model using graph convolutional neural networks. Deep learning has a problem of not being able to verify whether the designed model has a structure with optimized performance due to the nature of learning as a black box. The neural network structure search model is composed of a recurrent neural network that creates a model and a convolutional neural network that is the generated network. Conventional neural network structure search models use recurrent neural networks, but in this paper, we propose GC-NAS, which uses graph convolutional neural networks instead of recurrent neural networks to create convolutional neural network models. The proposed GC-NAS uses the Layer Extraction Block to explore depth, and the Hyper Parameter Prediction Block to explore spatial and temporal information (hyper parameters) based on depth information in parallel. Therefore, since the depth information is reflected, the search area is wider, and the purpose of the search area of the model is clear by conducting a parallel search with depth information, so it is judged to be superior in theoretical structure compared to GC-NAS. GC-NAS is expected to solve the problem of the high-dimensional time axis and the range of spatial search of recurrent neural networks in the existing neural network structure search model through the graph convolutional neural network block and graph generation algorithm. In addition, we hope that the GC-NAS proposed in this paper will serve as an opportunity for active research on the application of graph convolutional neural networks to neural network structure search.

Identification of suspension systems using error self recurrent neural network and development of sliding mode controller (오차 자기 순환 신경회로망을 이용한 현가시스템 인식과 슬라이딩 모드 제어기 개발)

  • 송광현;이창구;김성중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.625-628
    • /
    • 1997
  • In this paper the new neural network and sliding mode suspension controller is proposed. That neural network is error self-recurrent neural network. For fast on-line learning, this paper use recursive least squares method. A new neural networks converges considerably faster than the backpropagation algorithm and has advantages of being less affected by the poor initial weights and learning rate. The controller for suspension systems is designed according to sliding mode technique based on new proposed neural network.

  • PDF

Force controller of the robot gripper using fuzzy-neural fusion (퍼지-뉴럴 융합을 이용한 로보트 Gripper의 힘 제어기)

  • 임광우;김성현;심귀보;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.861-865
    • /
    • 1991
  • In general, the fusion of neural network and fuzzy logic theory is based on the fact that neural network and fuzzy logic theory have the common properties that 1) the activation function of a neuron is similar to the membership function of fuzzy variable, and 2) the functions of summation and products of neural network are similar to the Max-Min operator of fuzzy logics. In this paper, a fuzzy-neural network will be proposed and a force controller of the robot gripper, utilizing the fuzzy-neural network, will be presented. The effectiveness of the proposed strategy will be demonstrated by computer simulation.

  • PDF

A Novel Stabilizing Control for Neural Nonlinear Systems with Time Delays by State and Dynamic Output Feedback

  • Liu, Mei-Qin;Wang, Hui-Fang
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.24-34
    • /
    • 2008
  • A novel neural network model, termed the standard neural network model (SNNM), similar to the nominal model in linear robust control theory, is suggested to facilitate the synthesis of controllers for delayed (or non-delayed) nonlinear systems composed of neural networks. The model is composed of a linear dynamic system and a bounded static delayed (or non-delayed) nonlinear operator. Based on the global asymptotic stability analysis of SNNMs, Static state-feedback controller and dynamic output feedback controller are designed for the SNNMs to stabilize the closed-loop systems, respectively. The control design equations are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms to determine the control signals. Most neural-network-based nonlinear systems with time delays or without time delays can be transformed into the SNNMs for controller synthesis in a unified way. Two application examples are given where the SNNMs are employed to synthesize the feedback stabilizing controllers for an SISO nonlinear system modeled by the neural network, and for a chaotic neural network, respectively. Through these examples, it is demonstrated that the SNNM not only makes controller synthesis of neural-network-based systems much easier, but also provides a new approach to the synthesis of the controllers for the other type of nonlinear systems.

A Study on the Obstacle Avoidance using Fuzzy-Neural Networks (퍼지신경회로망을 이용한 장애물 회피에 관한 연구)

  • 노영식;권석근
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.338-343
    • /
    • 1999
  • In this paper, the fuzzy neural network for the obstacle avoidance, which consists of the straight-line navigation and the barrier elusion navigation, is proposed and examined. For the straight-line navigation, the fuzzy neural network gets two inputs, angle and distance between the line and the mobile robot, and produces one output, steering velocity of the mobile robot. For the barrier elusion navigation, four ultrasonic sensors measure the distance between the barrier and the mobile robot and provide the distance information to the network. Then the network outputs the steering velocity to navigate along the obstacle boundary. Training of the proposed fuzzy neural network is executed in a given environment in real-time. The weights adjusting uses the back-propagation of the gradient of error to be minimized. Computer simulations are carried out to examine the efficiency of the real time learning and the guiding ability of the proposed fuzzy neural network. It has been shown that the mobile robot that employs the proposed fuzzy neural network navigates more safely with and less trembling locus compared with the previous reported efforts.

  • PDF

Control of Left Ventricular Assist Device using Artificial Neural Network (인공신경망을 이용한 좌심실보조장치의 제어)

  • 류정우;김훈모;김상현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.260-266
    • /
    • 1996
  • In this paper, we presents neural network identification and control of highly complicated nonlinear Left Ventricular Assist Device(LVAD) system with a pneumatically driven mock circulation system. Generally the LVAD system need to compensate nonlinearities. Hence, it is necessary to apply high performance control techniques. Fortunately, the neural network can be applied to control of a nonlinear dynamic system by learning capability. In this study, we identify the LVAD system with Neural Network Identification. Once the NNI has learned the dynamic model of LVAD system, the other network, called Neural Network Controller(NNC), is designed for control of a LVAD system. The ability and effectiveness of identifying and controlling a LVAD system using the proposed algorithm will be demonstrated by computer simulation.

  • PDF

Soft Ground Settlement Estimation Using Neural Network (인공신경망을 이용한 연약지반 침하량 산정)

  • Roh, Jae-Ho;Won, Hyeo-Jea;Oh, Doo-Hwan;Hwang, Sun-Geun
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1405-1410
    • /
    • 2006
  • Purpose of this research is that offers basic data for optimized design using neural network method to calculate consolidation settlement in study area. In this research, preformed the neural network method that analyzed the settlement characteristics of soft ground nearby study area. Thus, data base established on ground properties and consolidation settlement of neighboring area. In addition, designed the optimum neural network model for prediction of settlement through network learning and consolidation settlement prediction using consolidation settlement DB and ground properties DB. Optimized neural network model decided by repeated learning for various case of hidden layers. In this study, proposed that the optimized consolidation settlement calculation method using neural network and verified which is the optimized consolidation settlement calculation method using neural network.

  • PDF

Two-Step Neural Network Approach for Determining EDM(Electrical Discharge Machining) Parameters in Low Tool Erosion (전극 저소모 방전조건 결정을 위한 2단계 신경망 접근)

  • 이건범;주상윤;왕지남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.44-51
    • /
    • 1998
  • Two-step neural network is designed for determining electrical discharge machining parameters in low erosion. The first neural network, which is used as a classification network, checks whether the current conditions are appropriate to electrical discharge machining in low tool erosion. If the conditions are appropriate to EDM in low erosion, suitable EDM parameters are generated by the second neural network. Theoretically known EDM conditions are produced and also utilized for training the second neural network. The trained neural network is tested how well suitable EDM machining conditions are generated under unknown machining situations Experimental result shows that the proposed two-step neural network approach could be effectively used for determining EDM parameters in low tool erosion. The results also have a practical contribution to EDM area in that it could be applied for maintaining low tool wear as well as obtaining maximum machining rates simultaneously.

  • PDF