• Title/Summary/Keyword: Neural-Network

Search Result 11,716, Processing Time 0.043 seconds

Identification of Multiple Cancer Cell Lines from Microscopic Images via Deep Learning (심층 학습을 통한 암세포 광학영상 식별기법)

  • Park, Jinhyung;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.374-376
    • /
    • 2021
  • For the diagnosis of cancer-related diseases in clinical practice, pathological examination using biopsy is essential after basic diagnosis using imaging equipment. In order to proceed with such a biopsy, the assistance of an oncologist, clinical pathologist, etc. with specialized knowledge and the minimum required time are essential for confirmation. In recent years, research related to the establishment of a system capable of automatic classification of cancer cells using artificial intelligence is being actively conducted. However, previous studies show limitations in the type and accuracy of cells based on a limited algorithm. In this study, we propose a method to identify a total of 4 cancer cells through a convolutional neural network, a kind of deep learning. The optical images obtained through cell culture were learned through EfficientNet after performing pre-processing such as identification of the location of cells and image segmentation using OpenCV. The model used various hyper parameters based on EfficientNet, and trained InceptionV3 to compare and analyze the performance. As a result, cells were classified with a high accuracy of 96.8%, and this analysis method is expected to be helpful in confirming cancer.

  • PDF

DNN based Binary Classification Model by Particular Matter Concentration (DNN 기반의 미세먼지 농도별 이진 분류 모델)

  • Lee, Jong-sung;Jung, Yong-jin;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.277-279
    • /
    • 2021
  • There is a problem that learning of a prediction model is not well performed depending on the characteristics of each particular matter concentration. To solve this problem, it is necessary to design a prediction model for low concentration and high concentration separately. Therefore, a classification model is needed to classify the concentration of particular matter into low and high concentrations. This paper proposes a classification model to classify low and high concentrations based on the concentration of particular matter. DNN was used as the classification model algorithm, and the classification model was designed by applying the optimal parameters after searching for hyper parameters. As for the result of evaluating the performance of the model, 97.54% of the low concentration classification was measured. And in the case of high concentration classification, 85.51% was measured.

  • PDF

Deep Learning-Based Defects Detection Method of Expiration Date Printed In Product Package (딥러닝 기반의 제품 포장에 인쇄된 유통기한 결함 검출 방법)

  • Lee, Jong-woon;Jeong, Seung Su;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.463-465
    • /
    • 2021
  • Currently, the inspection method printed on food packages and boxes is to sample only a few products and inspect them with human eyes. Such a sampling inspection has the limitation that only a small number of products can be inspected. Therefore, accurate inspection using a camera is required. This paper proposes a deep learning object recognition technology model, which is an artificial intelligence technology, as a method for detecting the defects of expiration date printed on the product packaging. Using the Faster R-CNN (region convolution neural network) model, the color images, converted gray images, and converted binary images of the printed expiration date are trained and then tested, and each detection rates are compared. The detection performance of expiration date printed on the package by the proposed method showed the same detection performance as that of conventional vision-based inspection system.

  • PDF

Probability distribution predicted performance improvement in noisy label (라벨 노이즈 환경에서 확률분포 예측 성능 향상 방법)

  • Roh, Jun-ho;Woo, Seung-beom;Hwang, Won-jun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.607-610
    • /
    • 2021
  • When learning a model in supervised learning, input data and the label of the data are required. However, labeling is high cost task and if automated, there is no guarantee that the label will always be correct. In the case of supervised learning in such a noisy labels environment, the accuracy of the model increases at the initial stage of learning, but decrease significantly after a certain period of time. There are various methods to solve the noisy label problem. But in most cases, the probability predicted by the model is used as the pseudo label. So, we proposed a method to predict the true label more quickly by refining the probabilities predicted by the model. Result of experiments on the same environment and dataset, it was confirmed that the performance improved and converged faster. Through this, it can be applied to methods that use the probability distribution predicted by the model among existing studies. And it is possible to reduce the time required for learning because it can converge faster in the same environment.

  • PDF

Prediction System of Running Heart Rate based on FitRec (FitRec 기반 달리기 심박수 예측 시스템)

  • Kim, Jinwook;Kim, Kwanghyun;Seon, Joonho;Lee, Seongwoo;Kim, Soo-Hyun;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.165-171
    • /
    • 2022
  • Human heart rate can be used to measure exercise intensity as an important indicator. If heart rate can be predicted, exercise can be performed more efficiently by regulating the intensity of exercise in advance. In this paper, a FitRec-based prediction model is proposed for estimating running heart rate for users. Endomondo data is utilized for training the proposed prediction model. The processing algorithms for time-series data, such as LSTM(long short term memory) and GRU(gated recurrent unit), are employed to compare their performance. On the basis of simulation results, it was demonstrated that the proposed model trained with running exercise performed better than the model trained with several cardiac exercises.

Quality Control Plan of Water Level in Agricultural Reservoirs using a Deep-Learning Based LSTM Model (딥러닝 기반 LSTM 모형을 이용한 농업용 저수지 수위자료 품질관리 방안)

  • Yang, Mi-Hye;Nam, Won-Ho;Shin, An-Kook;Kang, Mun-Sung;Kim, Taegon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.128-128
    • /
    • 2020
  • 최근 농업환경의 변화와 기후변화에 대응하기 위해 농업용수 관리 정보화 및 과학화의 필요성이 증대되어 실시간으로 저수지 저수량과 농업용수 공급량을 파악하기 위해 자동 수위계측시설이 도입되었다. 농림축산식품부의 저수지 자동수위측정기 설치 및 운영지침에 따라 현재 농어촌공사 관리 저수지 1,734개소 및 수로부 1,880개소에 자동수위계가 설치되어 있으며, 저수지와 수로에서 10분 간격으로 수위자료가 생성되고 있다. 농업용 저수지 수문자료의 공인지점은 2016년 6개소에서 2019년 49개소로 증대되고 있으며, 데이터 품질 저하의 최소화 및 신뢰성 있는 수문자료 생성의 필요성이 증가함에 따라 농업용 저수지의 특성을 반영한 저수지 수위 오결측 데이터 보정 방안 및 수문 자료 품질관리 방안이 요구된다. 농업용 저수지의 수위 변화 및 강우-유출 현상은 물리적 모형을 구축하여 기상, 지형 등 영향 인자와 수위(또는 유출)와의 상관관계를 분석하는 것은 무적으로 불가능하였지만, 최근 인공신경망 (Artificial Neural Network, ANN) 등과 같이 black-box 형태의 모형을 이용하여 비선형적인 수문해석이 가능해졌다. 본 연구에서는 빅데이터와 인공신경망을 결합시킨 알고리즘인 딥러닝 (Deep Learning) 기반의 LSTM (Long Short-Term Memory) 모형을 활용하여 농업용 저수지 수위자료를 검토하여 자동계측기에서 발생하는 오류 보정을 위해 품질관리 방안을 제시하고자 한다.

  • PDF

Temporal Analysis of Agricultural Reservoir Water Surface Area using Remote Sensing and CNN (위성영상 및 CNN을 활용한 소규모 농업용 저수지의 수표면적 시계열 분석)

  • Yang, Mi-Hye;Nam, Won-Ho;Lee, Hee-Jin;Kim, Taegon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.118-118
    • /
    • 2021
  • 최근 지구 온난화 현상으로 인한 기후변화로 이상기후 현상이 발생하고 있으며 이로 인해 장기적으로 폭염의 빈도 및 강도 상승에 따른 가뭄 피해 우려가 증가하고 있다. 농업 가뭄은 강수량 부족, 토양 수분 부족, 저수량 부족 등 농업분야에 영향을 주는 인자들과 관련되어 있어 농작물 생육 및 수확량 감소를 야기한다. 우리나라는 논농사가 주를 이루고 있어 국내 농업 가뭄은 주수원공인 농업용 저수지의 가용저수용량으로 판단 가능하다. 따라서 안정적인 농업용수 공급을 위해 수리시설물의 모니터링, 공급량 등의 분석이 이루어져야 하며, 농업 가뭄에 대비하기 위해 농업용 저수지의 가용저수용량 파악이 필요하다. 수자원 분야에서 지점자료의 시·공간적 한계점을 보완하기 위해 인공위성 자료를 활용한 연구가 활발히 이루어지고 있으며, 본 연구에서는 위성영상 자료 및 딥러닝 기반 알고리즘을 적용하여 농업용 저수지 수표면 탐지 및 시계열 분석을 목적으로 한다. 위성영상 자료는 5일 주기 및 10 m 공간해상도를 가진 Sentinel-2 위성영상 자료를 활용하고자 하였으며, 딥러닝에 적용하기 위하여 100장 이상의 영상 이미지를 구축하였다. 딥러닝 기반 알고리즘으로는 Convolutional Neural Network (CNN)을 활용하였으며, CNN은 주로 이미지 분류나 객체 검출 문제를 해결하기 위해 제안된 모델로 최근 픽셀 단위로 분류가 가능한 알고리즘이 개발되어 높은 정확도의 수표면 탐지가 가능할 것으로 판단된다. 따라서 본 연구에서는 CNN 기반 수표면 탐지 알고리즘을 개발하여 Sentinel-2 영상 기준 경기도 안성시를 대상으로 소규모 농업용 저수지의 수표면적에 대한 시계열 데이터를 분석하고자 한다.

  • PDF

Effective Drought Prediction Based on Machine Learning (머신러닝 기반 효과적인 가뭄예측)

  • Kim, Kyosik;Yoo, Jae Hwan;Kim, Byunghyun;Han, Kun-Yeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.326-326
    • /
    • 2021
  • 장기간에 걸쳐 넓은 지역에 대해 발생하는 가뭄을 예측하기위해 많은 학자들의 기술적, 학술적 시도가 있어왔다. 본 연구에서는 복잡한 시계열을 가진 가뭄을 전망하는 방법 중 시나리오에 기반을 둔 가뭄전망 방법과 실시간으로 가뭄을 예측하는 비시나리오 기반의 방법 등을 이용하여 미래 가뭄전망을 실시했다. 시나리오에 기반을 둔 가뭄전망 방법으로는, 3개월 GCM(General Circulation Model) 예측 결과를 바탕으로 2009년도 PDSI(Palmer Drought Severity Index) 가뭄지수를 산정하여 가뭄심도에 대한 단기예측을 실시하였다. 또, 통계학적 방법과 물리적 모델(Physical model)에 기반을 둔 확정론적 수치해석 방법을 이용하여 비시나리오 기반 가뭄을 예측했다. 기존 가뭄을 통계학적 방법으로 예측하기 위해서 시도된 대표적인 방법으로 ARIMA(Autoregressive Integrated Moving Average) 모델의 예측에 대한 한계를 극복하기위해 서포트 벡터 회귀(support vector regression, SVR)와 웨이블릿(wavelet neural network) 신경망을 이용해 SPI를 측정하였다. 최적모델구조는 RMSE(root mean square error), MAE(mean absolute error) 및 R(correlation Coefficient)를 통해 선정하였고, 1-6개월의 선행예보 시간을 갖고 가뭄을 전망하였다. 그리고 SPI를 이용하여, 마코프 연쇄(Markov chain) 및 대수선형모델(log-linear model)을 적용하여 SPI기반 가뭄예측의 정확도를 검증하였으며, 터키의 아나톨리아(Anatolia) 지역을 대상으로 뉴로퍼지모델(Neuro-Fuzzy)을 적용하여 1964-2006년 기간의 월평균 강수량과 SPI를 바탕으로 가뭄을 예측하였다. 가뭄 빈도와 패턴이 불규칙적으로 변하며 지역별 강수량의 양극화가 심화됨에 따라 가뭄예측의 정확도를 높여야 하는 요구가 커지고 있다. 본 연구에서는 복잡하고 비선형성으로 이루어진 가뭄 패턴을 기상학적 가뭄의 정도를 나타내는 표준강수증발지수(SPEI, Standardized Precipitation Evapotranspiration Index)인 월SPEI와 일SPEI를 기계학습모델에 적용하여 예측개선 모형을 개발하고자 한다.

  • PDF

The assessment of performances of regional frequency models using Monte Carlo simulation: Index flood method and artificial neural network model (몬테카를로 시뮬레이션을 이용한 지역빈도해석 기법의 성능 분석: 홍수지수법과 인공신경망 모델)

  • Lee, Joohyung;Seo, Miru;Park, Jaeheyon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.156-156
    • /
    • 2021
  • 본 연구는 지역빈도해석을 기반으로한 인공신경망 모델과 기존에 널리 사용되는 방법인 홍수지수법의 성능을 몬테카를로 시뮬레이션을 이용하여 평가하였다. 컴퓨터 기술이 발달함에 따라 인공지능에 대한 접근성이 좋아지며 수문학을 포함한 다양한 분야에 적용되고 있다. 인공지능을 이용하여 강수량 및 유량 등 다양한 수문자료에 대한 예측이 이루어지고 있으나 빈도해석에 관한 연구는 비교적 적다. 본 연구에서 사용된 인공 지능 모델은 대상 지점의 지형학적 자료와 수문학적 자료를 이용하여 인공신경망을 통해 지점의 확률강우량(QRT-ANN) 및 확률분포형의 매개변수 (PRT-ANN)를 추정한다. 지형학적 자료로는 위도, 경도 그리고 고도가 사용되었으며 수문학적 자료로는 대상 지점의 최근 30년 일일연최대강우량을 사용하였다. 지역빈도해석의 정확도는 지역 내 통계적 특성이 비슷한 지점들이 포함되면 될수록 높아진다. 통계적 특성으로는 불일치 척도, 이질성 척도, 적합성 척도가 있으며 다양한 조건의 통계적 특성에 따른 세 개의 지역빈도해석 방법의 성능을 평가하고자 하였다. 대상 지역 내 n개의 지점이 있다고 가정하였을 때, 홍수지수법의 경우 n-1개의 지점으로 추정한 지역 성장곡선을 이용하여 나머지 1개 지점의 확률강우량을 산정할 수 있으며 인공신경망 모델들 또한 n-1개 지점들의 자료를 이용하여 모델을 구축한 뒤 나머지 지점의 확률강우량 및 확률분포형의 매개변수를 예측할 수 있다. PRT-ANN의 경우 예측된 매개변수를 이용하여 확률강우량을 산정하며 시뮬레이션 시행마다 발생시킨 자료의 지점빈도해석 결과에 대한 나머지 세 방법의 평균 제곱근 상대오차 (Relative root mean square error, RRMSE)를 계산하였다. 몬테카를로 시뮬레이션을 이용한 성능 분석을 통하여 관측값의 다양한 통계적 특성에 맞는 지역빈도해석 방법을 제시할 수 있을 것으로 판단된다.

  • PDF

Chest Radiography of Tuberculosis: Determination of Activity Using Deep Learning Algorithm

  • Ye Ra Choi;Soon Ho Yoon;Jihang Kim;Jin Young Yoo;Hwiyoung Kim;Kwang Nam Jin
    • Tuberculosis and Respiratory Diseases
    • /
    • v.86 no.3
    • /
    • pp.226-233
    • /
    • 2023
  • Background: Inactive or old, healed tuberculosis (TB) on chest radiograph (CR) is often found in high TB incidence countries, and to avoid unnecessary evaluation and medication, differentiation from active TB is important. This study develops a deep learning (DL) model to estimate activity in a single chest radiographic analysis. Methods: A total of 3,824 active TB CRs from 511 individuals and 2,277 inactive TB CRs from 558 individuals were retrospectively collected. A pretrained convolutional neural network was fine-tuned to classify active and inactive TB. The model was pretrained with 8,964 pneumonia and 8,525 normal cases from the National Institute of Health (NIH) dataset. During the pretraining phase, the DL model learns the following tasks: pneumonia vs. normal, pneumonia vs. active TB, and active TB vs. normal. The performance of the DL model was validated using three external datasets. Receiver operating characteristic analyses were performed to evaluate the diagnostic performance to determine active TB by DL model and radiologists. Sensitivities and specificities for determining active TB were evaluated for both the DL model and radiologists. Results: The performance of the DL model showed area under the curve (AUC) values of 0.980 in internal validation, and 0.815 and 0.887 in external validation. The AUC values for the DL model, thoracic radiologist, and general radiologist, evaluated using one of the external validation datasets, were 0.815, 0.871, and 0.811, respectively. Conclusion: This DL-based algorithm showed potential as an effective diagnostic tool to identify TB activity, and could be useful for the follow-up of patients with inactive TB in high TB burden countries.