• Title/Summary/Keyword: Neural precursor cells

Search Result 31, Processing Time 0.025 seconds

Expression of Hr-Erf Gene during Ascidian Embryogenesis

  • Kim, Jung Eun;Lee, Won Young;Kim, Gil Jung
    • Development and Reproduction
    • /
    • v.17 no.4
    • /
    • pp.389-397
    • /
    • 2013
  • FGF9/16/20 signaling pathway specify the developmental fates of notochord, mesenchyme, and neural cells in ascidian embryos. Although a conserved Ras/MEK/Erk/Ets pathway is known to be involved in this signaling, the detailed mechanisms of regulation of FGF signaling pathway have remained largely elusive. In this study, we have isolated Hr-Erf, an ascidian orthologue of vertebrate Erf, to elucidate interactions of transcription factors involved in FGF signaling of the ascidian embryo. The Hr-Erf cDNA encompassed 3110 nucleotides including sequence encoded a predicted polypeptide of 760 amino acids. The polypeptide had the Ets DNA-binding domain in its N-terminal region. In adult animals, Hr-Erf mRNA was predominantly detected in muscle, and at lower levels in ganglion, gills, gonad, hepatopancreas, and stomach by quantitative real-time PCR (QPCR) method. During embryogenesis, Hr-Erf mRNA was detected from eggs to early developmental stage embryos, whereas the transcript levels were decreased after neurula stage. Similar to the QPCR results, maternal transcripts of Hr-Erf was detected in the fertilized eggs by whole-mount in situ hybridization. Maternal mRNA of Hr-Erf was gradually lost from the neurula stage. Zygotic expression of Hr-Erf started in most blastomeres at the 8-cell stage. At gastrula stage, Hr-Erf was specifically expressed in the precursor cells of brain and mesenchyme. When MEK inhibitor was treated, embryos resulted in loss of Hr-Erf expression in mesenchyme cells, and in excess of Hr-Erf in a-line neural cells. These results suggest that zygotic Hr-Erf products are involved in specification of mesenchyme and neural cells.

Reduced Cytotoxicity by Repetitive mRNA Transfection in Differentiated Neurons

  • Seung Hwan Ko;Jin Sun Kang;Sang-Mi Kim;Eun-Hye Lee;Chang-Hwan Park
    • International Journal of Stem Cells
    • /
    • v.16 no.1
    • /
    • pp.117-122
    • /
    • 2023
  • Background and Objectives: mRNA-based protein expression technology has been used to express functional proteins. We have previously generated dopamine neurons from rat-embryo derived neural precursor cells (NPCs) through repeated transfection of synthetic transcription factor mRNA encoding dopamine-inducible genes. However, NPCs began to die approximately 10 d post-transfection. In this study, we examined a long-term transfection protocol that did not affect cell viability. Methods and Results: Experiments were performed in eight groups sorted according to the start date of mRNA transfection. mRNA was transfected into NPCs daily for 21 d and live cell images of each group were recorded. NPCs which were differentiated for more than five days showed sustained gene expression and appreciable viability despite daily mRNA transfection for 21 d. Conclusions: Repeated mRNA transfection requires cells with a sufficient differentiation period.

The origin-of-cell harboring cancer-driving mutations in human glioblastoma

  • Lee, Joo Ho;Lee, Jeong Ho
    • BMB Reports
    • /
    • v.51 no.10
    • /
    • pp.481-483
    • /
    • 2018
  • Glioblastoma (GBM) is the most common and aggressive form of human adult brain malignancy. The identification of the cell of origin harboring cancer-driver mutations is the fundamental issue for understanding the nature of GBM and developing the effective therapeutic target. It has been a long-term hypothesis that neural stem cells in the subventricular zone (SVZ) might be the origin-of-cells in human glioblastoma since they are known to have life-long proliferative activity and acquire somatic mutations. However, the cell of origin for GBM remains controversial due to lack of direct evidence thereof in human GBM. Our recent study using various sequencing techniques in triple matched samples such as tumor-free SVZ, tumor, and normal tissues from human patients identified the clonal relationship of driver mutations between GBM and tumor-free SVZ harboring neural stem cells (NSCs). Tumor-free SVZ tissue away from the tumor contained low-level GBM driver mutations (as low as 1% allelic frequency) that were found in the dominant clones in its matching tumors. Moreover, via single-cell sequencing and microdissection, it was discovered that astrocyte-like NSCs accumulating driver mutations evolved into GBM with clonal expansion. Furthermore, mutagenesis of cancer-driving genes of NSCs in mice leads to migration of mutant cells from SVZ to distant brain and development of high-grade glioma through the aberrant growth of oligodendrocyte precursor lineage. Altogether, the present study provides the first direct evidence that NSCs in human SVZ is the cell of origin that develops the driver mutations of GBM.

Expression of HERV-HX2 in Cancer Cells and Human Embryonic Stem Cells

  • Jung, Hyun-Min;Choi, Seoung-Jun;Kim, Se-Hee;Moon, Sung-Hwan;Yoo, Jung-Ki;Chung, Hyung-Min;Kim, Jin-Kyeoung
    • Reproductive and Developmental Biology
    • /
    • v.32 no.2
    • /
    • pp.105-110
    • /
    • 2008
  • The endogenous retrovirus-like elements (HERVs) found on several human chromosomes are somehow involved in gene regulation, especially during the transcription level. HERV-H, located on chromosome Xp22, may regulate gastrin-releasing peptide receptor (GRPR) in connection with diverse diseases. By suppression subtractive hybridization screen on SV40-immortalized lung fibroblast (WI-38 VA-13), we discovered that expression of HERV-HX2, a clustered HERV-H sequence on chromosome X, was upregulated in immortalized lung cells, compared to that of normal cells. Expression of HERV-HX2 was then analyzed in various cell lines, including normal somatic cells, cancer cells, SV40-immortalized cells, and undifferentiated and differentiated human embryonic stem cells. Expression of HERV-HX2 was specifically upregulated in continuously-dividing cells, such as cancer cells and SV40-immortalized cells. Especially, HERV-HX2 in HeLa cells was highly upregulated during the S phase of the cell cycle. Similar results were obtained in hES cells, in which undifferentiated cells expressed more HERV-HX2 mRNA than differentiated hES cells, including neural precursor and endothelial progenitor cells. Taken together, our results suggest that HERV-HX2 is upregulated in cancer cells and undifferentiated hES cells, whereas downregulated as differentiation progress. Therefore, we assume that HERV-HX2 may playa role on proliferation of cancer cells as well as differentiation of hES cells in the transcriptional level.

Ultrastructural Study on Development of the Superior Cervical Ganglion of Human Fetuses (인태아 상경신경절 발육에 관한 전자현미경적 연구)

  • Kim, Dae-Young
    • The Korean Journal of Pain
    • /
    • v.11 no.1
    • /
    • pp.7-22
    • /
    • 1998
  • The development of the superior cervical ganglion was studied by electron microscopic method in human fetuses ranging from 40 mm to 260 mm of crown-rump length(10 to 30 weeks of gestational age). At 40 mm fetus, the superior cervical ganglion was composed of clusters of undifferentiated cell, primitive neuroblast, primitive supporting cell, and unmyelinated fibers. At 70 mm fetus, the neuroblasts and their processes were ensheated by the bodies or processes of satellite cells. The cytoplasm of the neuroblast contained rough endoplasmic reticulum, mitochondria, Golgi complex, Nissl bodies and dense-cored vesicles. As the neuroblasts grew and differentiated dense-cored vesicles moved away from perikaryal cytoplasm into developing processes. Synaptic contacts between the cholinergic axon and dendrites of postganglionic neuron and a few axosomatic synapses were first observed at 70 mm fetus. At 90 mm fetus the superior cervical ganglion consisted of neuroblasts, satellite cells, granule-containing cells, and unmyelinated nerve fibers. The ganglion cells increased somewhat in numbers and size by 150 mm fetus. Further differentiation resulted in the formation of young ganglion cells, whose cytoplasm was densely filled with cell organelles. During next prenatal stage up to 260 mm fetus, the cytoplasm of the ganglion cells contained except for large pigment granules, all intracytoplasmic structures which were also found in mature superior cervical ganglion. A great number of synaptic contact zones between the cholinergic preganglionic axon and the dendrites of the postganglionic neuron were observed and a few axosomatic synapses were also observed. Two morphological types of the granule-containing cells in the superior cervical ganglion were first identified at 90 mm fetus. Type I granule-containing cell occurred in solitary, whereas type II tended to appeared in clusters near the blood capillaries. Synaptic contacts were first found on the solitary granule-containing cell at 150 mm fetus. Synaptic contacts between the soma of type I granule-containing cells and preganglionic axon termials were observed. In addition, synaptic junctions between the processes of the granule-containing cells and dendrites of postganglionic neuron were also observed from 150 mm fetus onward. In conclusion, superior cervical ganglion cells and granule-containing cells arise from a common undifferentiated cell precursor of neural crest. The granule-containg cells exhibit a local modulatory feedback system in the superior cervical ganglion and may serve as interneurons between the preganglionic and postganglionic cells.

  • PDF

In vitro Neural Cell Differentiation of Genetically Modified Human Embryonic Stem Cells Expressing Tyrosine Hydroxylase (Tyrosine Hydroxylase 유전자가 주입된 인간 배아줄기세포의 체외 신경세포 분화)

  • Shin, Hyun-Ah;Kim, Eun-Young;Lee, Keum-Sil;Cho, Hwang-Yoon;Kim, Yong-Sik;Lee, Won-Don;Park, Se-Pill;Lim, Jin-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.1
    • /
    • pp.67-74
    • /
    • 2004
  • Objective: This study was to examine in vitro neural cell differentiation pattern of the genetically modified human embryonic stem cells expressing tyrosine hydroxylase (TH). Materials and Methods: Human embryonic stem (hES, MB03) cell was transfected with cDNAs cording for TH. Successful transfection was confirmed by western immunoblotting. Newly transfected cell line (TH#2/MB03) was induced to differentiate by two neurogenic factors retinoic acid (RA) and b-FGF. Exp. I) Upon differentiation using RA, embryoid bodies (EB, for 4 days) derived from TH#2/MB03 cells were exposed to RA ($10^{-6}M$)/AA ($5{\times}10^{-2}mM$) for 4 days, and were allowed to differentiate in N2 medium for 7, 14 or 21 days. Exp. II) When b-FGF was used, neuronal precursor cells were expanded at the presence of b-FGF (10 ng/ml) for 6 days followed by a final differentiation in N2 medium for 7, 14 or 21 days. Neuron differentiation was examined by indirect immunocytochemistry using neuron markers (NF160 & NF200). Results: After 7 days in N2 medium, approximately 80% and 20% of the RA or b-FGF induced Th#2/MB03 cells were immunoreactive to anti-NF160 and anti-NF200 antibodies, respectively. As differentiation continued, NF200 in RA treated cells significantly increased to 73.0% on 14 days compared to that in b-FGF treated cells (53.0%, p<0.05), while the proportion of cells expressing NF160 was similarly decreased between two groups. However, throughout the differentiation, expression of TH was maintained ($\sim$90%). HPLC analyses indicated the increased levels of L-DOPA in RA treated genetically modified hES cells with longer differentiation time. Conclusion: These results suggested that a genetically modified hES cells (TH#2/MB03) could be efficiently differentiated in vitro into mature neurons by RA induction method.

An Increase in Mesenchymal Stem Cells Expressing Nestin in Bone-Marrow-Derived Primary Cells Stimulates Neurogenic Differentiation in Rat

  • Han, Na Rae;Lee, Hyun;Yun, Jung Im;Kim, Choonghyo;Hwang, Jae Yeon;Park, Kyu Hyun;Lee, Seung Tae
    • Journal of Embryo Transfer
    • /
    • v.32 no.2
    • /
    • pp.39-45
    • /
    • 2017
  • Mesenchymal stem cells (MSCs) have been considered an alternative source of neuronal lineage cells, which are difficult to isolate from brain and expand in vitro. Previous studies have reported that MSCs expressing Nestin ($Nestin^+$ MSCs), a neuronal stem/progenitor cell marker, exhibit increased transcriptional levels of neural development-related genes, indicating that $Nestin^+$ MSCs may exert potential with neurogenic differentiation. Accordingly, we investigated the effects of the presence of $Nestin^+$ MSCs in bone-marrow-derived primary cells (BMPCs) on enhanced neurogenic differentiation of BMPCs by identifying the presence of $Nestin^+$ MSCs in uncultured and cultured BMPCs. The percentage of $Nestin^+$ MSCs in BMPCs was measured per passage by double staining with Nestin and CD90, an MSC marker. The efficiency of neurogenic differentiation was compared among passages, revealing the highest and lowest yields of $Nestin^+$ MSCs. The presence of $Nestin^+$ MSCs was identified in BMPCs before in vitro culture, and the highest and lowest percentages of $Nestin^+$ MSCs in BMPCs was observed at the third (P3) and fifth passages (P5). Moreover, significantly the higher efficiency of differentiation into neurons, oligodendrocyte precursor cells and astrocytes was detected in BMPCs at P3, compared with P5. In conclusion, these results demonstrate that neurogenic differentiation can be enhanced by increasing the proportion of $Nestin^+$ MSCs in cultured BMPCs.

Ultrastructural Study on Development of the Superior Cervical Ganglion of Human Fetuses (인태아 상경신경절 발육에 관한 전자현미경적 연구)

  • Kim, Dae-Young;Kim, Baik-Yoon;Yoon, Jae-Rhyong
    • Applied Microscopy
    • /
    • v.28 no.2
    • /
    • pp.139-158
    • /
    • 1998
  • The development of the superior cervical ganglion was studied by electron microscopic method in human fetuses ranging from 40 mm to 260 mm of crown-rump length (10 to 30 weeks of gestational age). At 40 mm fetus, the superior cervical ganglion was composed of clusters of undifferentiated cell, primitive neuroblast, primitive supporting cell, and unmyelinated fibers. At 70mm fetus, the neuroblasts and their processes were ensheated by the bodies or processes of satellite cells. The cytoplasm of the neuroblast contained rough endoplasmic reticulum, mitochondria, Golgi complex, Nissl bodies and dense-cored vesicles. As the neuroblasts grew and differentiated dense-cored vesicles moved away from perikaryal cytoplasm into developing processes. Synaptic contacts between the cholinergic axon and dendrites of postganglionic neuron and a few axosomatic synapses were first observed at 70 mm fetus. At 90 mm fetus the superior cervical ganglion consisted of neuroblasts, satellite cells, granule-containing cells, and unmyelinated nerve fibers. The ganglion cells increased somewhat in numbers and size by 150 mm fetus. Further differentiation resulted in the formation of young ganglion cells, whose cytoplasm was densely filled with cell organelles. During next prenatal stage up to 260 mm fetus, the cytoplasm of the ganglion cells contained except for large pigment granules, all intracytoplasmic structures which were also found in mature superior cervical ganglion. A great number of synaptic contact zones between the cholinergic preganglionic axon and the dendrites of the postganglionic neuron were observed and a few axosomatic synapses were also observed. Two morphological types of the granule-containing cells in the superior cervical ganglion were first identified at 90 mm fetus. Type I granule-containing cell occurred in solitary, whereas type II tended to appeared in clusters near the blood capillaries. Synaptic contacts were first found on the solitary granule-containing cell at 150 mm fetus. Synaptic contacts between the soma of type I granule-containing cells and preganglionic axon termials were observed. In addition, synaptic junctions between the processes of the granule- containing cells and dendrites of postganglionic neuron were also observed from 150 mm fetus onward. In conclusion, superior cervical ganglion cells and granule-containing cells arise from a common undifferentiated cell precursor of neural crest . The granule-containg cells exhibit a local modulatory feedback system in the superior cervical ganglion and nay serve as interneurons between the preganglionic and postganglionic cells.

  • PDF

Inhibition of the NEDD8 Conjugation Pathway by shRNA to UBA3, the Subunit of the NEDD8-Activating Enzyme, Suppresses the Growth of Melanoma Cells

  • Cheng, Fang;Chen, Hao;Zhang, Lei;Ruo-Hong, Li;Liu, Yi;Sun, Jian-Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.57-62
    • /
    • 2012
  • Neural precursor cell-expressed developmentally down-regulated 8 (NEDD8), a ubiquitin-like protein, mainly functions through covalent ligation to cullin proteins. Conjugation of NEDD8 with cullins can promote ubiquitination, which plays a critical role in the degradation of many proteins. UBA3 is the subunit of NEDD8-activating enzyme which is one of the keys for NEDD8 linkage to cullin proteins. Previous research showed NEDD8 conjugation to be up-regulated in highly proliferative cell lines. In the present study, up-regulated NEDD8 conjugation was observed in melanoma cell lines by Western blot analysis. After down-regulation with a RNAi to UBA3, proliferation of M14 was suppressed in vitro and in vivo. In conclusion, up-regulated NEDD8 conjugation may be involved in the development of melanoma. Interference in this pathway might offera promising method for melanoma therapy.

Transcriptional Regulatory Role of NELL2 in Preproenkephalin Gene Expression

  • Ha, Chang Man;Kim, Dong Hee;Lee, Tae Hwan;Kim, Han Rae;Choi, Jungil;Kim, Yoonju;Kang, Dasol;Park, Jeong Woo;Ojeda, Sergio R.;Jeong, Jin Kwon;Lee, Byung Ju
    • Molecules and Cells
    • /
    • v.45 no.8
    • /
    • pp.537-549
    • /
    • 2022
  • Preproenkephalin (PPE) is a precursor molecule for multiple endogenous opioid peptides Leu-enkephalin (ENK) and Met-ENK, which are involved in a wide variety of modulatory functions in the nervous system. Despite the functional importance of ENK in the brain, the effect of brain-derived factor(s) on PPE expression is unknown. We report the dual effect of neural epidermal growth factor (EGF)-like-like 2 (NELL2) on PPE gene expression. In cultured NIH3T3 cells, transfection of NELL2 expression vectors induced an inhibition of PPE transcription intracellularly, in parallel with downregulation of protein kinase C signaling pathways and extracellular signal-regulated kinase. Interestingly, these phenomena were reversed when synthetic NELL2 was administered extracellularly. The in vivo disruption of NELL2 synthesis resulted in an increase in PPE mRNA level in the rat brain, suggesting that the inhibitory action of intracellular NELL2 predominates the activation effect of extracellular NELL2 on PPE gene expression in the brain. Biochemical and molecular studies with mutant NELL2 structures further demonstrated the critical role of EGF-like repeat domains in NELL2 for regulation of PPE transcription. These are the first results to reveal the spatio-specific role of NELL2 in the homeostatic regulation of PPE gene expression.