• 제목/요약/키워드: Neural networks modeling

Search Result 390, Processing Time 0.029 seconds

Role of Artificial Neural Networks in Multidisciplinary Optimization and Axiomatic Design

  • Lee, Jong-Soo
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.695-700
    • /
    • 2008
  • Artificial neural network (ANN) has been extensively used in areas of nonlinear system modeling, analysis and design applications. Basically, ANN has its distinct capabilities of implementing system identification and/or function approximation using a number of input/output patterns that can be obtained via numerical and/or experimental manners. The paper describes a role of ANN, especially a back-propagation neural network (BPN) in the context of engineering analysis, design and optimization. Fundamental mechanism of BPN is briefly summarized in terms of training procedure and function approximation. The BPN based causality analysis (CA) is further discussed to realize the problem decomposition in the context of multidisciplinary design optimization. Such CA is also applied to quantitatively evaluate the uncoupled or decoupled design matrix in the context of axiomatic design with the independence axiom.

  • PDF

Performance Comparison between Neural Network and Genetic Programming Using Gas Furnace Data

  • Bae, Hyeon;Jeon, Tae-Ryong;Kim, Sung-Shin
    • Journal of information and communication convergence engineering
    • /
    • 제6권4호
    • /
    • pp.448-453
    • /
    • 2008
  • This study describes design and development techniques of estimation models for process modeling. One case study is undertaken to design a model using standard gas furnace data. Neural networks (NN) and genetic programming (GP) are each employed to model the crucial relationships between input factors and output responses. In the case study, two models were generated by using 70% training data and evaluated by using 30% testing data for genetic programming and neural network modeling. The model performance was compared by using RMSE values, which were calculated based on the model outputs. The average RMSE for training and testing were 0.8925 (training) and 0.9951 (testing) for the NN model, and 0.707227 (training) and 0.673150 (testing) for the GP model, respectively. As concern the results, the NN model has a strong advantage in model training (using the all data for training), and the GP model appears to have an advantage in model testing (using the separated data for training and testing). The performance reproducibility of the GP model is good, so this approach appears suitable for modeling physical fabrication processes.

평면파 입사시 신경회로망을 이용한 회절현상의 역모델링 (The Inverse Modeling of Diffraction Phenomena under Plane Wave Incidence using Neural Network)

  • 나희승
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1175-1182
    • /
    • 2000
  • Diffraction systematically causes error in acoustic measurements. Most probes are designed to reduce this phenomenon. On the contrary, this paper proposes a spherical probe a] lowing acoustic inten sity measurements in three dimensions to be made, which creates a diffracted field that is well-defined, thanks to analytic solution of diffraction phenomena. Six microphones are distributed on the surface of the sphere along three rectangular axes. Its measurement technique is not based on finite difference approximation, as is the case for the ID probe but on the analytic solution of diffraction phenomena. In fact, the success of sound source identification depends on the inverse models used to estimate inverse diffraction phenomena, which has nonlinear properties. In this paper, we propose the concept of nonlinear inverse diffraction modeling using a neural network and the idea of 3 dimensional sound source identification with better performances. A number of computer simulations are carried out in order to demonstrate the diffraction phenomena under various angles. Simulations for the inverse modeling of diffraction phenomena have been successfully conducted in showing the superiority of the neural network.

PNA를 이용한 일 기준증발산량의 모형화 (Modeling of Daily Reference Evapotranspiration using Polynomial Networks Approach (PNA))

  • 김성원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.473-473
    • /
    • 2011
  • Group method of data handling neural networks model (GMDH-NNM) is used to estimate daily reference evapotranspiration (ETo) using limited climatic variables such as max temperature ($T_{max}$), min temperature ($T_{min}$), mean wind speed ($W_{mean}$), mean relative humidity ($RH_{mean}$) and sunshine duration (SD). And, for the performances of GMDH-NNM, it consists of training and test performances, respectively. The training and test performances are carried out using daily time series data, respectively. From this research, we evaluate the impact of GMDH-NNM for the modeling of the nonlinear time series data. We should, thus, construct the credible data of the daily ETo data using GMDH-NNM, and can suggest the methodology for the irrigation and drainage networks system. Furthermore, this research represents that the strong nonlinear relationship such as ETo modeling can be generalized using GMDH-NNM.

  • PDF

A Comparative Analysis of Artificial Neural Network (ANN) Architectures for Box Compression Strength Estimation

  • By Juan Gu;Benjamin Frank;Euihark Lee
    • 한국포장학회지
    • /
    • 제29권3호
    • /
    • pp.163-174
    • /
    • 2023
  • Though box compression strength (BCS) is commonly used as a performance criterion for shipping containers, estimating BCS remains a challenge. In this study, artificial neural networks (ANN) are implemented as a new tool, with a focus on building up ANN architectures for BCS estimation. An Artificial Neural Network (ANN) model can be constructed by adjusting four modeling factors: hidden neuron numbers, epochs, number of modeling cycles, and number of data points. The four factors interact with each other to influence model accuracy and can be optimized by minimizing model's Mean Squared Error (MSE). Using both data from the literature and "synthetic" data based on the McKee equation, we find that model estimation accuracy remains limited due to the uncertainty in both the input parameters and the ANN process itself. The population size to build an ANN model has been identified based on different data sets. This study provides a methodology guide for future research exploring the applicability of ANN to address problems and answer questions in the corrugated industry.

순방향 모델링과 간접학습에 의한 신경망제어기 (A neural network controller based on forward modeling and indirect learning)

  • 이부환;이인수;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.218-223
    • /
    • 1992
  • This paper describes a learning method of neural network controllers. The learning method improves the performance of indirect learning mechanism in the neuro-control of nonlinear systems. To precisely identify dynamic characteristics of the plant by utilizing a limited prior information we propose a new energy function which takes advantage of the proportional relationship between outputs of the plant and those of neural networks.

  • PDF

딥러닝을 이용한 다변량, 비선형, 과분산 모델링의 개선: 자동차 연료소모량 예측 (Improvement of Multivariable, Nonlinear, and Overdispersion Modeling with Deep Learning: A Case Study on Prediction of Vehicle Fuel Consumption Rate)

  • 한대석;유인균;이수형
    • 한국도로학회논문집
    • /
    • 제19권4호
    • /
    • pp.1-7
    • /
    • 2017
  • PURPOSES : This study aims to improve complex modeling of multivariable, nonlinear, and overdispersion data with an artificial neural network that has been a problem in the civil and transport sectors. METHODS: Deep learning, which is a technique employing artificial neural networks, was applied for developing a large bus fuel consumption model as a case study. Estimation characteristics and accuracy were compared with the results of conventional multiple regression modeling. RESULTS : The deep learning model remarkably improved estimation accuracy of regression modeling, from R-sq. 18.76% to 72.22%. In addition, it was very flexible in reflecting large variance and complex relationships between dependent and independent variables. CONCLUSIONS : Deep learning could be a new alternative that solves general problems inherent in conventional statistical methods and it is highly promising in planning and optimizing issues in the civil and transport sectors. Extended applications to other fields, such as pavement management, structure safety, operation of intelligent transport systems, and traffic noise estimation are highly recommended.

Neural Networks Based Modeling with Adaptive Selection of Hidden Layer's Node for Path Loss Model

  • Kang, Chang Ho;Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제8권4호
    • /
    • pp.193-200
    • /
    • 2019
  • The auto-encoder network which is a good candidate to handle the modeling of the signal strength attenuation is designed for denoising and compensating the distortion of the received data. It provides a non-linear mapping function by iteratively learning the encoder and the decoder. The encoder is the non-linear mapping function, and the decoder demands accurate data reconstruction from the representation generated by the encoder. In addition, the adaptive network width which supports the automatic generation of new hidden nodes and pruning of inconsequential nodes is also implemented in the proposed algorithm for increasing the efficiency of the algorithm. Simulation results show that the proposed method can improve the neural network training surface to achieve the highest possible accuracy of the signal modeling compared with the conventional modeling method.

Modeling the confined compressive strength of hybrid circular concrete columns using neural networks

  • Oreta, Andres W.C.;Ongpeng, Jason M.C.
    • Computers and Concrete
    • /
    • 제8권5호
    • /
    • pp.597-616
    • /
    • 2011
  • With respect to rehabilitation, strengthening and retrofitting of existing and deteriorated columns in buildings and bridges, CFRP sheets have been found effective in enhancing the performance of existing RC columns by wrapping and bonding CFRP sheets externally around the concrete. Concrete columns and piers that are confined by both lateral steel reinforcement and CFRP are sometimes referred to as "hybrid" concrete columns. With the availability of experimental data on concrete columns confined by steel reinforcement and/or CFRP, the study presents modeling using artificial neural networks (ANNs) to predict the compressive strength of hybrid circular RC columns. The prediction of the ultimate confined compressive strength of RC columns is very important especially when this value is used in estimating the capacity of structures. The present ANN model used as parameters for the confining materials the lateral steel ratio (${\rho}_s$) and the FRP volumetric ratio (${\rho}_{FRP}$). The model gave good predictions for three types of confined columns: (a) columns confined with steel reinforcement only, (b) CFRP confined columns, and (c) hybrid columns confined by both steel and CFRP. The model may be used for predicting the compressive strength of existing circular RC columns confined with steel only that will be strengthened or retrofitted using CFRP.