• 제목/요약/키워드: Neural network model

검색결과 4,655건 처리시간 0.04초

네이버 영화 리뷰 데이터를 이용한 의미 분석(semantic analysis) (Semantic analysis via application of deep learning using Naver movie review data)

  • 김소진;송종우
    • 응용통계연구
    • /
    • 제35권1호
    • /
    • pp.19-33
    • /
    • 2022
  • SNS의 등장으로 인터넷 이용자들이 온라인에 남기는 텍스트의 양이 방대해지고 그 중요성이 강조되고있다. 특히 네이버의 영화 탭에서 볼 수 있는 영화 평점이나 리뷰는 실제로 관객들이 영화를 보기 전 해당 영화를 볼 것인지 결정하는 데 주요 요인이 되기도 한다. 본 연구는 실제 네이버 영화 리뷰 데이터를 가지고 평점을 예측하는 분석을 수행했다. 영화 리뷰 데이터를 분석하기 위해 평점의 분포를 통해 데이터 특성을 살펴보았고, 텍스트의 의미를 분석하기 위해 형태소 분석을 통한 한국어 자연어처리를 수행했다. 또한 평점 예측에 활용할 모델 선택을 위해 2-Class와 multi-Class 문제들에 대해 머신러닝과 딥러닝, 회귀와 분류 분석을 비교했으며, 오분류의 원인을 영화 리뷰 데이터 특성과 연관시켜 서술했다.

Damaged cable detection with statistical analysis, clustering, and deep learning models

  • Son, Hyesook;Yoon, Chanyoung;Kim, Yejin;Jang, Yun;Tran, Linh Viet;Kim, Seung-Eock;Kim, Dong Joo;Park, Jongwoong
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.17-28
    • /
    • 2022
  • The cable component of cable-stayed bridges is gradually impacted by weather conditions, vehicle loads, and material corrosion. The stayed cable is a critical load-carrying part that closely affects the operational stability of a cable-stayed bridge. Damaged cables might lead to the bridge collapse due to their tension capacity reduction. Thus, it is necessary to develop structural health monitoring (SHM) techniques that accurately identify damaged cables. In this work, a combinational identification method of three efficient techniques, including statistical analysis, clustering, and neural network models, is proposed to detect the damaged cable in a cable-stayed bridge. The measured dataset from the bridge was initially preprocessed to remove the outlier channels. Then, the theory and application of each technique for damage detection were introduced. In general, the statistical approach extracts the parameters representing the damage within time series, and the clustering approach identifies the outliers from the data signals as damaged members, while the deep learning approach uses the nonlinear data dependencies in SHM for the training model. The performance of these approaches in classifying the damaged cable was assessed, and the combinational identification method was obtained using the voting ensemble. Finally, the combination method was compared with an existing outlier detection algorithm, support vector machines (SVM). The results demonstrate that the proposed method is robust and provides higher accuracy for the damaged cable detection in the cable-stayed bridge.

OBD-II 정보를 이용한 운전자 스트레스 모니터링 시스템 (Driving Stress Monitoring System Based on Information Provided by On-Board Diagnostics Version II)

  • 조상진;조영
    • 한국전자통신학회논문지
    • /
    • 제18권1호
    • /
    • pp.29-38
    • /
    • 2023
  • 인간의 생체 신호 데이터가 인간의 상태를 가장 잘 설명할 수 있다 할지라도 실제 운전 중에 운전자의 생체 데이터를 얻어 운전자의 상태를 판단하는 일은 쉽지 않다. 본 논문에서는 이러한 한계를 극복하기 위한 방법 중 하나로 운전자의 주행 정보를 이용한 운전자 스트레스 모니터링 시스템을 제안한다. 운전자의 주행 정보는 OBD-II 스캐너를 통해 취득하고, 실제 운전자의 운전 스트레스 여부는 E4 밴드를 통해 취득한 EDA 데이터를 이용하여 판단한다. 스트레스 감지 모델은 MLP 신경망 모델을 사용하였으며 약 한 달 간의 운행 데이터를 이용하여 학습시켰다. 제안한 시스템을 평가하기 위하여 약 1시간의 운행 데이터를 사용하였고 약 92%의 정확도를 얻을 수 있었다.

글로벌 기후지수와 인공신경망모형을 이용한 금강권역의 봄철 강수량 예측 (Prediction of spring precipitation in the Geum River basin using global climate indices and artificial neural network model)

  • 김철겸;이정우;김현준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.292-292
    • /
    • 2023
  • 본 연구에서는 인공신경망을 이용한 통계적 모형을 구성하여 금강권역의 봄철(3~5월) 강수량 예측을 수행하였다. 통계적 모형의 예측인자로서는 NOAA 등에서 제공하는 AAO, AMM, AO 등 36종의 기후지수와 대상권역인 금강권역의 강수량, 기온 등의 기상인자 8종 등 총 44종의 기후지수를 활용하였다. 예측대상기간을 기준으로 선행기간(1~18개월)에 따른 상관성을 분석하여 상관도가 높은 10개의 기후지수를 예측인자로 선정하였다. 예측모형 형태는 10개의 입력층과 1개의 은닉층으로 되어 있는 인공신경망모형을 구성하였다. 모형 구성과정에서의 불확실성을 최소화하고 예측모형의 적합도를 높이기 위해 예측대상기간을 기준으로 과거 40년간의 자료에 대해 임의로 20년간 자료를 선별하여 모형을 구성하고, 너머지 기간에 대해 검증하는 무작위 교차검증을 반복하여, 예측대상기간 및 예측시점에 따라 각각 적합도가 높은 1000개의 예측모형을 선별하였다. 과거기간(1991~2022년)을 대상으로 예측시점에 따라 각 연도별 1000개의 예측결과를 도출하여, 실제 해당년도의 관측값과의 비교를 통해 예측성을 분석하였다. 예측성은 크게 예측치의 최대값과 최소값 범위 및 예측치의 25%~75% 범위 안에 관측치가 포함될 확률, 그리고 과거 관측값의 3분위 구간을 기준으로 한 예측확률 등을 평가하였다. 관측치가 예측치의 범위 안에 포함될 확률은 평균 87.5%, 예측치의 25~75% 범위 안에 포함될 확률은 30.2%로 나타났으며, 3분위 예측확률은 35.6%로 분석되었다. 관측값과의 일대일 비교는 정확도가 떨어지지만 3분위 예측확률이 33.3% 이상인 점으로 볼 때 예측성은 확보된다고 볼 수 있다. 다만, 우리나라 강수량의 불규칙성과 통계적 모형 특성상 과거 관측되지 않은 패턴에 대해서는 예측이 어려운 문제가 있어, 특정년도의 예측결과가 관측치를 크게 벗어나는 경우도 종종 나타나고 있다.

  • PDF

대수용가 스마트미터와 수압 데이터를 이용한 소블록 내 관 파손사고 감지모델 개발 (Development of a pipe burst detection model using large consumer's smart water meter and pressure data)

  • 김경필;유완식;강신욱;최두용
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.521-521
    • /
    • 2023
  • 지방상수도의 관 파손사고 감지 및 누수관리 방법에는 블록시스템 구축을 통한 소블록별 야간최소유량 감시방법이 가장 대표적이다. 야간최소유량은 새벽 2시와 4시 사이의 인구 활동 비율이 가장 낮은 새벽 시간대에 소블록에 공급된 유량을 의미하며, 대부분 유량 성분은 누수량일 것이라는 가정에서 출발한다. 그러나 아파트 중심의 주거 형태를 보이는 도심지의 경우, 새벽 시간대에도 다량의 물수요가 비정기적으로 발생하고 있어 관망의 이상 여부를 감시하기 위한 관리기준으로서 야간최소유량을 이용하기에는 높은 일간 변동성에 따른 한계가 있다고 할 수 있다. 즉, 야간최소유량은 관 파손사고 발생의 감시보다는 관로 연결 또는 급수전 분기 부위에서 발생하는 미량의 누수가 수개월에 걸쳐 누적되는 장기추세를 분석하여 누수탐사반의 투입 시점을 결정하기 위한 근거를 제시하기 위한 목적으로 사용되며, 아직까지 관 파손사고의 발생은 자체적인 감지보다는 민원에 의해 인지되는 경우가 많다. 최근, 스마트관망 구축사업(SWM) 등을 통해 관 파손 및 누수 감지를 위한 청음식 누수감지센서가 소블록 내 도입되고 있으나, 초기 시설투자에 큰 비용이 수반되며 주변 소음과 배터리 전원방식의 한계로 인하여 새벽 시간대에만 분석이 제한적으로 적용되는 경우가 많아 이 역시도 상시적인 관 파손사고의 감시기술이라 보기는 어렵다. 본 연구에서는 소블록 유입점에서의 유량·압력과 소블록 내에 설치된 대수용가 스마트미터, 그리고 사고감지를 위한 수압계 사이의 평상시 수리적 균형을 학습한 DNN(Deep Neural Network) 모델을 이용하여 관 파손사고를 실시간 감지하는 모델 개발연구를 수행하였다. 모델은 관 파손사고 감지를 위한 수압계의 최적 위치와 대수를 결정하기 위한 모듈과 관 파손사고 감지모듈로 구성되며, 1개 소블록 Test-Bed를 구축하여 모델을 생성하고 PDD 관망해석 모델을 통해 생성된 가상의 사고에 대한 감지 여부로서 개발 모델의 감지성능을 평가하였다.

  • PDF

RCP4.5 기후변화 시나리오와 인공신경망을 이용한 우리나라 확률강우량의 변화 (The change of rainfall quantiles calculated with artificial neural network model from RCP4.5 climate change scenario)

  • 이주형;허준행;김기주;김영오
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.130-130
    • /
    • 2022
  • 기후변화로 인한 기상이변 현상으로 폭우와 홍수 등 수문학적 극치 사상의 출현 빈도가 잦아지고 있다. 따라서 이러한 기상이변 현상에 적응하기 위하여 보다 정확한 확률강우량 측정의 필요성이 증가하고 있다. 대장 지점의 미래 확률강우량 계산을 위해선 기후변화 시나리오의 비정상성을 고려해야 한다. 본 연구는 비정상적인 미래 기후에서 확률강우량이 어떻게 변화하는지 측정하는 것을 목표로 한다. Representative Concentration Pathway (RCP4.5)에 따른 우리나라의 확률강우량 계산에 인공신경망을 포함한 정상성, 비정상성 확률강우량 산정 모델들이 사용되었다. 지점빈도해석(AFA), 홍수지수법(IFM), 모분포홍수지수법(PIF), 인공신경망을 이용한 Quantile & Parameter regression technique(QRT & PRT)이 정상성 자료에 대해 확률강우량을 계산하는 모델로 사용되었으며, 비정상성 자료에 대해서는 비정상성 지점빈도해석(NS-AFA), 비정상성 홍수지수법(NS-IFM), 비정상성 모분포홍수지수법(NS-PIF), 인공신경망을 사용한 비정상성 Quantile & Parameter regression technique(NS-QRT & NS-PRT)이 사용되었다. Rescaled Akaike information criterion(rAIC)를 사용한 불확실성 분석과 적합도 검정을 통해서 generalized extreme value(GEV) 분포형 모델이 정상성 및 비정상성 확률강우량 산정에 가장 적합한 모델로 선정되었다. 이후, 관측자료가 GEV(0,0,0)을 따르고 시나리오 자료가 GEV(1,0,0)을 따르는 지점들을 선택하여 미래의 확률강우량 변화를 추정하였다. 각 빈도해석 모델들은 몬테카를로 시뮬레이션을 통해 bias, relative bias(Rbias), root mean square error(RMSE), relative root mean square error(RRMSE)를 바탕으로 측정하여 정확도를 계산하였으며 그 결과 QRT와 NS-QRT가 각각 정상성과 비정상성 자료로부터 가장 정확하게 확률강우량을 계산하였다. 본 연구를 통해 향후 기후변화의 영향으로 확률강우량이 증가할 것으로 예상되며, 비정상성을 고려한 빈도분석 또한 필요함을 제안하였다.

  • PDF

관절의 시·공간적 관계를 고려한 딥러닝 기반의 행동인식 기법 (Deep learning-based Human Action Recognition Technique Considering the Spatio-Temporal Relationship of Joints)

  • 최인규;송혁
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.413-415
    • /
    • 2022
  • 인간의 관절은 인간의 신체를 구성하는 요소로 인간의 행동을 분석하는데 유용한 정보로 활용될 수 있기 때문에 관절 정보를 이용한 행동인식에 대한 많은 연구가 진행되었다. 하지만 각각의 독립적인 관절 정보만을 이용해서 시시각각 변화하는 인간의 행동을 인식하는 것은 매우 복잡한 문제이다. 따라서 학습에 사용할 부가적인 정보 추출 방법과 과거의 상태를 기반으로 현재 상태를 판단하는 고려하는 알고리즘이 필요하다. 본 논문에서는 연결된 관절들의 위치 관계와 각 관절의 위치가 시간의 흐름에 따라 변화하는 것을 고려한 행동 인식 기법을 제안한다. 사전 학습된 관절 추출 모델을 이용하여 각 관절의 위치 정보를 획득하고 연결된 관절 사이의 차 벡터를 이용하여 뼈대 정보를 추출한다. 그리고 두 가지 형태의 입력에 맞춰 간소화된 신경망을 구성하고 LSTM을 더하여 시·공간적 특징을 추출하도록 한다. 9개의 행동으로 구성된 데이터 셋을 이용하여 실험한 결과 각 관절 및 뼈대의 시·공간적 관계 특징을 고려하여 행동 인식 정확도를 측정하였을 때 단일 관절 정보만을 이용한 결과에 비해 뛰어난 성능을 보임을 확인하였다.

  • PDF

Automatically Diagnosing Skull Fractures Using an Object Detection Method and Deep Learning Algorithm in Plain Radiography Images

  • Tae Seok, Jeong;Gi Taek, Yee; Kwang Gi, Kim;Young Jae, Kim;Sang Gu, Lee;Woo Kyung, Kim
    • Journal of Korean Neurosurgical Society
    • /
    • 제66권1호
    • /
    • pp.53-62
    • /
    • 2023
  • Objective : Deep learning is a machine learning approach based on artificial neural network training, and object detection algorithm using deep learning is used as the most powerful tool in image analysis. We analyzed and evaluated the diagnostic performance of a deep learning algorithm to identify skull fractures in plain radiographic images and investigated its clinical applicability. Methods : A total of 2026 plain radiographic images of the skull (fracture, 991; normal, 1035) were obtained from 741 patients. The RetinaNet architecture was used as a deep learning model. Precision, recall, and average precision were measured to evaluate the deep learning algorithm's diagnostic performance. Results : In ResNet-152, the average precision for intersection over union (IOU) 0.1, 0.3, and 0.5, were 0.7240, 0.6698, and 0.3687, respectively. When the intersection over union (IOU) and confidence threshold were 0.1, the precision was 0.7292, and the recall was 0.7650. When the IOU threshold was 0.1, and the confidence threshold was 0.6, the true and false rates were 82.9% and 17.1%, respectively. There were significant differences in the true/false and false-positive/false-negative ratios between the anterior-posterior, towne, and both lateral views (p=0.032 and p=0.003). Objects detected in false positives had vascular grooves and suture lines. In false negatives, the detection performance of the diastatic fractures, fractures crossing the suture line, and fractures around the vascular grooves and orbit was poor. Conclusion : The object detection algorithm applied with deep learning is expected to be a valuable tool in diagnosing skull fractures.

헬멧 착용 여부 및 쓰러짐 사고 감지를 위한 AI 영상처리와 알람 시스템의 구현 (Implementation of an alarm system with AI image processing to detect whether a helmet is worn or not and a fall accident)

  • 조용화;이혁재
    • 융합신호처리학회논문지
    • /
    • 제23권3호
    • /
    • pp.150-159
    • /
    • 2022
  • 본 논문은 실시간 영상 분석을 통해서 산업현장에서 활동하는 여러 근로자의 영상 객체를 추출해 내고, 추출된 이미지로 부터 개별 영상 분석을 통해 헬멧의 착용 여부와 낙상 사고 여부를 확인하는 방법을 구현한다. 근로자의 영상 객체를 탐지하기 위해서 딥러닝 기반 컴퓨터 비전 모델인 YOLO를 사용하였으며, 추출된 이미지를 이용하여 헬멧의 착용여부를 판단하기 위해 따로 5,000장의 다양한 헬멧 학습 데이터 이미지를 만들어서 사용하였다. 또한, 낙상사고 여부를 판단하기 위해서 Mediapipe의 Pose 실시간 신체추적 알고리즘을 사용하여 머리의 위치를 확인하고 움직이는 속도를 계산하여 쓰러짐 여부를 판단하였다. 결과에 신뢰성을 주기위한 방법으로 YOLO의 바운딩 박스의 크기를 구하여 객체의 자세를 유추하는 방법을 추가하고 구현하였다. 최종적으로 관리자에게 알림 서비스를 위하여 텔레그램 API Bot과 Firebase DB 서버를 구현하였다.

양방향 RNN과 학술용어사전을 이용한 영문학술문서 교정 방법론 (Methodology of Automatic Editing for Academic Writing Using Bidirectional RNN and Academic Dictionary)

  • 노영훈;장태우;원종운
    • 한국전자거래학회지
    • /
    • 제27권2호
    • /
    • pp.175-192
    • /
    • 2022
  • 자연어 처리 기술을 접목한 컴퓨터 보조 언어 학습 연구가 진행되고 있지만, 기존 영문교정은 일반적인 영어 문장을 기반으로 연구되어, 격식을 갖춘 문체와 전문적인 기술 용어를 사용하는 학술 영문의 경우 그 특성을 반영하지 못한 교정 결과를 제공한다. 또한 문장의 문법적 완성도 향상을 위한 다수의 기존 연구는 교정을 통한 문장 전달력 향상의 한계점이 존재한다. 따라서, 본 논문은 전문적인 기술 용어 사용을 기반으로 문장의 명확한 의미 전달을 목적으로 하는 학술 영문을 위한 자동 교정 방법론을 제안한다. 제안 방법론은 오탈자 교정과 문장 전달력 개선 두 단계로 구성된다. 오탈자 교정 단계는 입력된 오탈자와 문맥에 적합한 교정 단어를 제공한다. 문장 전달력 개선 단계는 원문과 교정문의 쌍으로부터 학습할 수 있는 양방향 순환신경망 기계번역 사후교정 모델을 기반으로 문장의 전달력을 개선한다. 실제 교정 데이터를 이용한 실험을 수행하였으며, 정량적·정성적 분석을 통해 제안 방법론의 우수성을 검증하였다.