• Title/Summary/Keyword: Neural network(NN)

Search Result 368, Processing Time 0.027 seconds

Machine Learning Data Extension Way for Confirming Genuine of Trademark Image which is Rotated (회전한 상표 이미지의 진위 결정을 위한 기계 학습 데이터 확장 방법)

  • Gu, Bongen
    • Journal of Platform Technology
    • /
    • v.8 no.1
    • /
    • pp.16-23
    • /
    • 2020
  • For protecting copyright for trademark, convolutional neural network can be used to confirm genuine of trademark image. For this, repeated training one trademark image degrades the performance of machine learning because of overfitting problem. Therefore, this type of machine learning application generates training data in various way. But if genuine trademark image is rotated, this image is classified as not genuine trademark. In this paper, we propose the way for extending training data to confirm genuine of trademark image which is rotated. Our proposed way generates rotated image from genuine trademark image as training data. To show effectiveness of our proposed way, we use CNN machine learning model, and evaluate the accuracy with test image. From evaluation result, our way can be used to generate training data for machine learning application which confirms genuine of rotated trademark image.

  • PDF

Multi-dimensional Analysis and Prediction Model for Tourist Satisfaction

  • Shrestha, Deepanjal;Wenan, Tan;Gaudel, Bijay;Rajkarnikar, Neesha;Jeong, Seung Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.480-502
    • /
    • 2022
  • This work assesses the degree of satisfaction tourists receive as final recipients in a tourism destination based on the fact that satisfied tourists can make a significant contribution to the growth and continuous improvement of a tourism business. The work considers Pokhara, the tourism capital of Nepal as a prefecture of study. A stratified sampling methodology with open-ended survey questions is used as a primary source of data for a sample size of 1019 for both international and domestic tourists. The data collected through a survey is processed using a data mining tool to perform multi-dimensional analysis to discover information patterns and visualize clusters. Further, supervised machine learning algorithms, kNN, Decision tree, Support vector machine, Random forest, Neural network, Naive Bayes, and Gradient boost are used to develop models for training and prediction purposes for the survey data. To find the best model for prediction purposes, different performance matrices are used to evaluate a model for performance, accuracy, and robustness. The best model is used in constructing a learning-enabled model for predicting tourists as satisfied, neutral, and unsatisfied visitors. This work is very important for tourism business personnel, government agencies, and tourism stakeholders to find information on tourist satisfaction and factors that influence it. Though this work was carried out for Pokhara city of Nepal, the study is equally relevant to any other tourism destination of similar nature.

An EEG-fNIRS Hybridization Technique in the Multi-class Classification of Alzheimer's Disease Facilitated by Machine Learning (기계학습 기반 알츠하이머성 치매의 다중 분류에서 EEG-fNIRS 혼성화 기법)

  • Ho, Thi Kieu Khanh;Kim, Inki;Jeon, Younghoon;Song, Jong-In;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.305-307
    • /
    • 2021
  • Alzheimer's Disease (AD) is a cognitive disorder characterized by memory impairment that can be assessed at early stages based on administering clinical tests. However, the AD pathophysiological mechanism is still poorly understood due to the difficulty of distinguishing different levels of AD severity, even using a variety of brain modalities. Therefore, in this study, we present a hybrid EEG-fNIRS modalities to compensate for each other's weaknesses with the help of Machine Learning (ML) techniques for classifying four subject groups, including healthy controls (HC) and three distinguishable groups of AD levels. A concurrent EEF-fNIRS setup was used to record the data from 41 subjects during Oddball and 1-back tasks. We employed both a traditional neural network (NN) and a CNN-LSTM hybrid model for fNIRS and EEG, respectively. The final prediction was then obtained by using majority voting of those models. Classification results indicated that the hybrid EEG-fNIRS feature set achieved a higher accuracy (71.4%) by combining their complementary properties, compared to using EEG (67.9%) or fNIRS alone (68.9%). These findings demonstrate the potential of an EEG-fNIRS hybridization technique coupled with ML-based approaches for further AD studies.

  • PDF

A Comparative Study of Prediction Models for College Student Dropout Risk Using Machine Learning: Focusing on the case of N university (머신러닝을 활용한 대학생 중도탈락 위험군의 예측모델 비교 연구 : N대학 사례를 중심으로)

  • So-Hyun Kim;Sung-Hyoun Cho
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.12 no.2
    • /
    • pp.155-166
    • /
    • 2024
  • Purpose : This study aims to identify key factors for predicting dropout risk at the university level and to provide a foundation for policy development aimed at dropout prevention. This study explores the optimal machine learning algorithm by comparing the performance of various algorithms using data on college students' dropout risks. Methods : We collected data on factors influencing dropout risk and propensity were collected from N University. The collected data were applied to several machine learning algorithms, including random forest, decision tree, artificial neural network, logistic regression, support vector machine (SVM), k-nearest neighbor (k-NN) classification, and Naive Bayes. The performance of these models was compared and evaluated, with a focus on predictive validity and the identification of significant dropout factors through the information gain index of machine learning. Results : The binary logistic regression analysis showed that the year of the program, department, grades, and year of entry had a statistically significant effect on the dropout risk. The performance of each machine learning algorithm showed that random forest performed the best. The results showed that the relative importance of the predictor variables was highest for department, age, grade, and residence, in the order of whether or not they matched the school location. Conclusion : Machine learning-based prediction of dropout risk focuses on the early identification of students at risk. The types and causes of dropout crises vary significantly among students. It is important to identify the types and causes of dropout crises so that appropriate actions and support can be taken to remove risk factors and increase protective factors. The relative importance of the factors affecting dropout risk found in this study will help guide educational prescriptions for preventing college student dropout.

Optimal supervised LSA method using selective feature dimension reduction (선택적 자질 차원 축소를 이용한 최적의 지도적 LSA 방법)

  • Kim, Jung-Ho;Kim, Myung-Kyu;Cha, Myung-Hoon;In, Joo-Ho;Chae, Soo-Hoan
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.47-60
    • /
    • 2010
  • Most of the researches about classification usually have used kNN(k-Nearest Neighbor), SVM(Support Vector Machine), which are known as learn-based model, and Bayesian classifier, NNA(Neural Network Algorithm), which are known as statistics-based methods. However, there are some limitations of space and time when classifying so many web pages in recent internet. Moreover, most studies of classification are using uni-gram feature representation which is not good to represent real meaning of words. In case of Korean web page classification, there are some problems because of korean words property that the words have multiple meanings(polysemy). For these reasons, LSA(Latent Semantic Analysis) is proposed to classify well in these environment(large data set and words' polysemy). LSA uses SVD(Singular Value Decomposition) which decomposes the original term-document matrix to three different matrices and reduces their dimension. From this SVD's work, it is possible to create new low-level semantic space for representing vectors, which can make classification efficient and analyze latent meaning of words or document(or web pages). Although LSA is good at classification, it has some drawbacks in classification. As SVD reduces dimensions of matrix and creates new semantic space, it doesn't consider which dimensions discriminate vectors well but it does consider which dimensions represent vectors well. It is a reason why LSA doesn't improve performance of classification as expectation. In this paper, we propose new LSA which selects optimal dimensions to discriminate and represent vectors well as minimizing drawbacks and improving performance. This method that we propose shows better and more stable performance than other LSAs' in low-dimension space. In addition, we derive more improvement in classification as creating and selecting features by reducing stopwords and weighting specific values to them statistically.

  • PDF

Basic Research on the Possibility of Developing a Landscape Perceptual Response Prediction Model Using Artificial Intelligence - Focusing on Machine Learning Techniques - (인공지능을 활용한 경관 지각반응 예측모델 개발 가능성 기초연구 - 머신러닝 기법을 중심으로 -)

  • Kim, Jin-Pyo;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.70-82
    • /
    • 2023
  • The recent surge of IT and data acquisition is shifting the paradigm in all aspects of life, and these advances are also affecting academic fields. Research topics and methods are being improved through academic exchange and connections. In particular, data-based research methods are employed in various academic fields, including landscape architecture, where continuous research is needed. Therefore, this study aims to investigate the possibility of developing a landscape preference evaluation and prediction model using machine learning, a branch of Artificial Intelligence, reflecting the current situation. To achieve the goal of this study, machine learning techniques were applied to the landscaping field to build a landscape preference evaluation and prediction model to verify the simulation accuracy of the model. For this, wind power facility landscape images, recently attracting attention as a renewable energy source, were selected as the research objects. For analysis, images of the wind power facility landscapes were collected using web crawling techniques, and an analysis dataset was built. Orange version 3.33, a program from the University of Ljubljana was used for machine learning analysis to derive a prediction model with excellent performance. IA model that integrates the evaluation criteria of machine learning and a separate model structure for the evaluation criteria were used to generate a model using kNN, SVM, Random Forest, Logistic Regression, and Neural Network algorithms suitable for machine learning classification models. The performance evaluation of the generated models was conducted to derive the most suitable prediction model. The prediction model derived in this study separately evaluates three evaluation criteria, including classification by type of landscape, classification by distance between landscape and target, and classification by preference, and then synthesizes and predicts results. As a result of the study, a prediction model with a high accuracy of 0.986 for the evaluation criterion according to the type of landscape, 0.973 for the evaluation criterion according to the distance, and 0.952 for the evaluation criterion according to the preference was developed, and it can be seen that the verification process through the evaluation of data prediction results exceeds the required performance value of the model. As an experimental attempt to investigate the possibility of developing a prediction model using machine learning in landscape-related research, this study was able to confirm the possibility of creating a high-performance prediction model by building a data set through the collection and refinement of image data and subsequently utilizing it in landscape-related research fields. Based on the results, implications, and limitations of this study, it is believed that it is possible to develop various types of landscape prediction models, including wind power facility natural, and cultural landscapes. Machine learning techniques can be more useful and valuable in the field of landscape architecture by exploring and applying research methods appropriate to the topic, reducing the time of data classification through the study of a model that classifies images according to landscape types or analyzing the importance of landscape planning factors through the analysis of landscape prediction factors using machine learning.

Classification of Multi-temporal SAR Data by Using Data Transform Based Features and Multiple Classifiers (자료변환 기반 특징과 다중 분류자를 이용한 다중시기 SAR자료의 분류)

  • Yoo, Hee Young;Park, No-Wook;Hong, Sukyoung;Lee, Kyungdo;Kim, Yeseul
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.205-214
    • /
    • 2015
  • In this study, a novel land-cover classification framework for multi-temporal SAR data is presented that can combine multiple features extracted through data transforms and multiple classifiers. At first, data transforms using principle component analysis (PCA) and 3D wavelet transform are applied to multi-temporal SAR dataset for extracting new features which were different from original dataset. Then, three different classifiers including maximum likelihood classifier (MLC), neural network (NN) and support vector machine (SVM) are applied to three different dataset including data transform based features and original backscattering coefficients, and as a result, the diverse preliminary classification results are generated. These results are combined via a majority voting rule to generate a final classification result. From an experiment with a multi-temporal ENVISAT ASAR dataset, every preliminary classification result showed very different classification accuracy according to the used feature and classifier. The final classification result combining nine preliminary classification results showed the best classification accuracy because each preliminary classification result provided complementary information on land-covers. The improvement of classification accuracy in this study was mainly attributed to the diversity from combining not only different features based on data transforms, but also different classifiers. Therefore, the land-cover classification framework presented in this study would be effectively applied to the classification of multi-temporal SAR data and also be extended to multi-sensor remote sensing data fusion.

Speech extraction based on AuxIVA with weighted source variance and noise dependence for robust speech recognition (강인 음성 인식을 위한 가중화된 음원 분산 및 잡음 의존성을 활용한 보조함수 독립 벡터 분석 기반 음성 추출)

  • Shin, Ui-Hyeop;Park, Hyung-Min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.326-334
    • /
    • 2022
  • In this paper, we propose speech enhancement algorithm as a pre-processing for robust speech recognition in noisy environments. Auxiliary-function-based Independent Vector Analysis (AuxIVA) is performed with weighted covariance matrix using time-varying variances with scaling factor from target masks representing time-frequency contributions of target speech. The mask estimates can be obtained using Neural Network (NN) pre-trained for speech extraction or diffuseness using Coherence-to-Diffuse power Ratio (CDR) to find the direct sounds component of a target speech. In addition, outputs for omni-directional noise are closely chained by sharing the time-varying variances similarly to independent subspace analysis or IVA. The speech extraction method based on AuxIVA is also performed in Independent Low-Rank Matrix Analysis (ILRMA) framework by extending the Non-negative Matrix Factorization (NMF) for noise outputs to Non-negative Tensor Factorization (NTF) to maintain the inter-channel dependency in noise output channels. Experimental results on the CHiME-4 datasets demonstrate the effectiveness of the presented algorithms.