• Title/Summary/Keyword: Neural Networks model

Search Result 1,871, Processing Time 0.031 seconds

A Study on fatigue Damage Model using Neural Networks in 2024-T3 aluminium alloy (신경회로망을 이용한 Al 2024-T3합금의 피로손상모델에 관한 연구)

  • 최우성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.341-347
    • /
    • 2000
  • To estimate crack growth rate and cycle ratio uniquely, many investigators have developed various kinds of mechanical parameters and theories. But, these have produced local solution space through single parameter. Neural Networks can perform pattern classification using several input and output parameters. Fatigue damage model by neural networks was used to recognize the relation between da/dN N/Nf, and half-value breadth ratio B/BO0, fractal dimension Df and fracture mechanical parameters in 2024-T3 ability to predict both crack growth rate da/dN and cycle ratio N/Nf within engineering estimated mean error (5%).

  • PDF

Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils

  • Luat, Nguyen-Vu;Lee, Kihak;Thai, Duc-Kien
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.385-397
    • /
    • 2020
  • This paper presents an application of artificial neural networks (ANNs) in settlement prediction of a foundation on sandy soil. In order to train the ANN model, a wide experimental database about settlement of foundations acquired from available literatures was collected. The data used in the ANNs model were arranged using the following five-input parameters that covered both geometrical foundation and sandy soil properties: breadth of foundation B, length to width L/B, embedment ratio Df/B, foundation net applied pressure qnet, and average SPT blow count N. The backpropagation algorithm was implemented to develop an explicit predicting formulation. The settlement results are compared with the results of previous studies. The accuracy of the proposed formula proves that the ANNs method has a huge potential for predicting the settlement of foundations on sandy soils.

Supramax Bulk Carrier Market Forecasting with Technical Indicators and Neural Networks

  • Lim, Sang-Seop;Yun, Hee-Sung
    • Journal of Navigation and Port Research
    • /
    • v.42 no.5
    • /
    • pp.341-346
    • /
    • 2018
  • Supramax bulk carriers cover a wide range of ocean transportation requirements, from major to minor bulk cargoes. Market forecasting for this segment has posed a challenge to researchers, due to complexity involved, on the demand side of the forecasting model. This paper addresses this issue by using technical indicators as input features, instead of complicated supply-demand variables. Artificial neural networks (ANN), one of the most popular machine-learning tools, were used to replace classical time-series models. Results revealed that ANN outperformed the benchmark binomial logistic regression model, and predicted direction of the spot market with more than 70% accuracy. Results obtained in this paper, can enable chartering desks to make better short-term chartering decisions.

3D Convolutional Neural Networks based Fall Detection with Thermal Camera (열화상 카메라를 이용한 3D 컨볼루션 신경망 기반 낙상 인식)

  • Kim, Dae-Eon;Jeon, BongKyu;Kwon, Dong-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.1
    • /
    • pp.45-54
    • /
    • 2018
  • This paper presents a vision-based fall detection system to automatically monitor and detect people's fall accidents, particularly those of elderly people or patients. For video analysis, the system should be able to extract both spatial and temporal features so that the model captures appearance and motion information simultaneously. Our approach is based on 3-dimensional convolutional neural networks, which can learn spatiotemporal features. In addition, we adopts a thermal camera in order to handle several issues regarding usability, day and night surveillance and privacy concerns. We design a pan-tilt camera with two actuators to extend the range of view. Performance is evaluated on our thermal dataset: TCL Fall Detection Dataset. The proposed model achieves 90.2% average clip accuracy which is better than other approaches.

Frontal view face recognition using the hidden markov model and neural networks (은닉 마르코프 모델과 신경회로망을 이용한 정면 얼굴인식)

  • 윤강식;함영국;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.9
    • /
    • pp.97-106
    • /
    • 1996
  • In this paper, we propose a face recognition algorithm using the hidden markov model and neural networks (HMM-NN). In the preprocessing stage, we find edges of a face using the locally adaptive threshold (LAT) scheme and extract features based on generic knowledge of a face, then construct a database with extracted features. In the training stage, we generate HMM parameters for each person by using the forward-backward algorithm. In the recognition stage, we apply probability vlaues calculated by the HMM to subsequent neural networks (NN) as input data. Computer simulation shows that the proposed HMM-NN algorithm gives higher recognition rate compared with conventional face recognition algorithms.

  • PDF

Intelligent Intrusion Detection Systems Using the Asymmetric costs of Errors in Data Mining (데이터 마이닝의 비대칭 오류비용을 이용한 지능형 침입탐지시스템 개발)

  • Hong, Tae-Ho;Kim, Jin-Wan
    • The Journal of Information Systems
    • /
    • v.15 no.4
    • /
    • pp.211-224
    • /
    • 2006
  • This study investigates the application of data mining techniques such as artificial neural networks, rough sets, and induction teaming to the intrusion detection systems. To maximize the effectiveness of data mining for intrusion detection systems, we introduced the asymmetric costs with false positive errors and false negative errors. And we present a method for intrusion detection systems to utilize the asymmetric costs of errors in data mining. The results of our empirical experiment show our intrusion detection model provides high accuracy in intrusion detection. In addition the approach using the asymmetric costs of errors in rough sets and neural networks is effective according to the change of threshold value. We found the threshold has most important role of intrusion detection model for decreasing the costs, which result from false negative errors.

  • PDF

Computer Science Research Ideas Generation Using Neural Networks

  • Maghraby, Ashwag;Assaeed, Joanna
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.127-130
    • /
    • 2022
  • The number of published journals, conferences, and research papers in computer science is increasing rapidly, which has led to a challenge in coming up with new and unique ideas for research. To alleviate the issue, this paper uses artificial neural networks (ANNs) to generate new computer science research ideas. It does so by using a dataset collected from IEEE published journals and conferences to train an ANN model. The results reveal that the model has a 14% success rate in generating usable ideas. The outcome of this paper has implications for helping both new and experienced researchers come up with novel research topics.

A New Modeling Approach to Fuzzy-Neural Networks Architecture (퍼지 뉴럴 네트워크 구조로의 새로운 모델링 연구)

  • Park, Ho-Sung;Oh, Sung-Kwun;Yoon, Yang-Woung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.664-674
    • /
    • 2001
  • In this paper, as a new category of fuzzy-neural networks architecture, we propose Fuzzy Polynomial Neural Networks (FPNN) and discuss a comprehensive design methodology related to its architecture. FPNN dwells on the ideas of fuzzy rule-based computing and neural networks. The FPNN architecture consists of layers with activation nodes based on fuzzy inference rules. Here each activation node is presented as Fuzzy Polynomial Neuron(FPN). The conclusion part of the rules, especially the regression polynomial, uses several types of high-order polynomials such as linear, quadratic and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership functions are studied. It is worth stressing that the number of the layers and the nods in each layer of the FPNN are not predetermined, unlike in the case of the popular multilayer perceptron structure, but these are generated in a dynamic manner. With the aid of two representative time series process data, a detailed design procedure is discussed, and the stability is introduced as a measure of stability of the model for the comparative analysis of various architectures.

  • PDF

Optimized Multi-Output Fuzzy Neural Networks Based on Interval Type-2 Fuzzy Set for Pattern Recognition (패턴 인식을 위한 Interval Type-2 퍼지 집합 기반의 최적 다중출력 퍼지 뉴럴 네트워크)

  • Park, Keon-Jun;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.705-711
    • /
    • 2013
  • In this paper, we introduce an design of multi-output fuzzy neural networks based on Interval Type-2 fuzzy set. The proposed Interval Type-2 fuzzy set-based fuzzy neural networks with multi-output (IT2FS-based FNNm) comprise the network structure generated by dividing the input space individually. The premise part of the fuzzy rules of the network reflects the individuality of the division space for the entire input space and the consequent part of the fuzzy rules expresses three types of polynomial functions with interval sets such as constant, linear, and modified quadratic inference for pattern recognition. The learning of fuzzy neural networks is realized by adjusting connections of the neurons in the consequent part of the fuzzy rules, and it follows a back-propagation algorithm. In addition, in order to optimize the network, the parameters of the network such as apexes of membership functions, uncertainty factor, learning rate and momentum coefficient were automatically optimized by using real-coded genetic algorithm. The proposed model is evaluated with the use of numerical experimentation.

Evolutionary Design Methodology of Fuzzy Set-based Polynomial Neural Networks with the Information Granule

  • Roh Seok-Beom;Ahn Tae-Chon;Oh Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.301-304
    • /
    • 2005
  • In this paper, we propose a new fuzzy set-based polynomial neuron (FSPN) involving the information granule, and new fuzzy-neural networks - Fuzzy Set based Polynomial Neural Networks (FSPNN). We have developed a design methodology (genetic optimization using Genetic Algorithms) to find the optimal structure for fuzzy-neural networks that expanded from Group Method of Data Handling (GMDH). It is the number of input variables, the order of the polynomial, the number of membership functions, and a collection of the specific subset of input variables that are the parameters of FSPNN fixed by aid of genetic optimization that has search capability to find the optimal solution on the solution space. We have been interested in the architecture of fuzzy rules that mimic the real world, namely sub-model (node) composing the fuzzy-neural networks. We adopt fuzzy set-based fuzzy rules as substitute for fuzzy relation-based fuzzy rules and apply the concept of Information Granulation to the proposed fuzzy set-based rules.

  • PDF