• 제목/요약/키워드: Neural Networks Theory

검색결과 166건 처리시간 0.033초

점증적 학습 퍼지 신경망을 이용한 적응 분류 모델 (An Adaptive Classification Model Using Incremental Training Fuzzy Neural Networks)

  • 이현숙
    • 한국지능시스템학회논문지
    • /
    • 제16권6호
    • /
    • pp.736-741
    • /
    • 2006
  • 분류 시스템은 데이터 전처리 모듈, 학습모듈, 의사결정모듈로 구성되어 있으며 지능형시스템의 중요한 구성요소로 활용되어왔다. 특히 학습모듈은 사전정보를 제공하므로 분류를 위한 핵심 역할을 수행하여 왔다. 기존의 학습을 위한 기법은 주로 승자독점방식으로 데이터를 처리하므로 경계가 불명확한 대부분의 실세계 응용에 적합하지 못하다. 또한 학습 알고리즘에 필요한 데이터를 한꺼번에 준비해야 하지만 이는 일반적으로 가능하지 않은 경우가 많다. 이를 위하여 본 논문에서는 점증적 학습 퍼지신경망, FNN-I,를 이용한 적응 분류모델을 설계한다. 이 모델에서는 유용하게 정보를 표현하기 위하여 퍼지이론을 도입하고 계속적으로 모여지는 데이터를 가지고 점증적으로 학습할 수 있는 알고리즘을 제시한다. 제안된 모델을 컴퓨터 바이러스 분류를 위한 실제 데이터에 적용하여 점증적으로 학습할 수 있고 효과적으로, 새로운 바이러스 데이터를 분류할 수 있음을 보인다.

정보이론과 신경망의 가중치를 이용한 속성선택 (Feature Selection Algorithm using Information theory and Neural Networks)

  • 조재훈;이대종;전명근
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.197-198
    • /
    • 2008
  • 본 논문에서는 신경망의 가중치와 정보이론을 이용한 속성선택 기법을 제안하였다. 제안된 방법은 정보이론의 상호정보량을 이용하여 각 속성들의 중요도를 평가한 후 중요도가 높은 속성들만을 선택하여 신경망의 입력으로 사용한다. 신경망의 입력으로 선택된 속성의 가중치에 대한 평가를 통하여 오차에 큰 영향을 미치는 속성들을 순차적으로 제거하여 가장 우수한 속성들을 구한다. 제안된 기법의 성능을 평가하기 위하여 다양한 패턴 분류 문제에 적용하고 그 성능이 우수함을 확인하였다.

  • PDF

Gestures as a Means of Human-Friendly Communication between Man and Machine

  • Bien, Zeungnam
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -1
    • /
    • pp.3-6
    • /
    • 2000
  • In this paper, ‘gesture’ is discussed as a means of human-friendly communication between man and machine. We classify various gestures into two Categories: ‘contact based’ and ‘non-contact based’ Each method is reviewed and some real applications are introduced. Also, key design issues of the method are addressed and some contributions of soft-computing techniques, such as fuzzy logic, artificial neural networks (ANN), rough set theory and evolutionary computation, are discussed.

  • PDF

Spatial interpolation of SPT data and prediction of consolidation of clay by ANN method

  • Kim, Hyeong-Joo;Dinoy, Peter Rey T.;Choi, Hee-Seong;Lee, Kyoung-Bum;Mission, Jose Leo C.
    • Coupled systems mechanics
    • /
    • 제8권6호
    • /
    • pp.523-535
    • /
    • 2019
  • Artificial Intelligence (AI) is anticipated to be the future of technology. Hence, AI has been applied in various fields over the years and its applications are expected to grow in number with the passage of time. There has been a growing need for accurate, direct, and quick prediction of geotechnical and foundation engineering models especially since the success of each project relies on numerous amounts of data. In this study, two applications of AI in the field of geotechnical and foundation engineering are presented - spatial interpolation of standard penetration test (SPT) data and prediction of consolidation of clay. SPT and soil profile data may be predicted and estimated at any location and depth at a site that has no available borehole test data using artificial intelligence techniques such as artificial neural networks (ANN) based on available geospatial information from nearby boreholes. ANN can also be used to accelerate the calculation of various theoretical methods such as the one-dimensional consolidation theory of clay with high efficiency by using lesser computation resources. The results of the study showed that ANN can be a valuable, powerful, and practical tool in providing various information that is needed in geotechnical and foundation design.

Deriving a New Divergence Measure from Extended Cross-Entropy Error Function

  • Oh, Sang-Hoon;Wakuya, Hiroshi;Park, Sun-Gyu;Noh, Hwang-Woo;Yoo, Jae-Soo;Min, Byung-Won;Oh, Yong-Sun
    • International Journal of Contents
    • /
    • 제11권2호
    • /
    • pp.57-62
    • /
    • 2015
  • Relative entropy is a divergence measure between two probability density functions of a random variable. Assuming that the random variable has only two alphabets, the relative entropy becomes a cross-entropy error function that can accelerate training convergence of multi-layer perceptron neural networks. Also, the n-th order extension of cross-entropy (nCE) error function exhibits an improved performance in viewpoints of learning convergence and generalization capability. In this paper, we derive a new divergence measure between two probability density functions from the nCE error function. And the new divergence measure is compared with the relative entropy through the use of three-dimensional plots.

Shear forces amplification due to torsion, explicit reliance on structural topology. Theoretical and numerical proofs using the Ratio of Torsion (ROT) concept

  • Bakas, Nikolaos
    • Structural Engineering and Mechanics
    • /
    • 제61권1호
    • /
    • pp.15-29
    • /
    • 2017
  • The recently introduced index Ratio Of Torsion (ROT) quantifies the base shear amplification due to torsional effects on shear cantilever types of building structures. In this work, a theoretical proof based on the theory of elasticity is provided, depicting that the ratio of torsion (ROT) is independent of the forces acting on the structure, although its definition stems from the shear forces. This is a particular attribute of other design and evaluation criteria against torsion such as center of rigidity and center of strength. In the case of ROT, this evidence could be considered as inconsistent, as ROT is a function solely of the forces acting on structural members, nevertheless it is proven to be independent of them. As ROT is the amplification of the shear forces due to in-plan irregularities, this work depicts that this increase of internal shear forces rely only on the structural topology. Moreover, a numerical verification of this theoretical finding was accomplished, using linear statistics interpretation and nonlinear neural networks simulation for an adequate database of structures.

Advanced performance evaluation system for existing concrete bridges

  • Miyamoto, Ayaho;Emoto, Hisao;Asano, Hiroyoshi
    • Computers and Concrete
    • /
    • 제14권6호
    • /
    • pp.727-743
    • /
    • 2014
  • The management of existing concrete bridges has become a major social concern in many developed countries due to the large number of bridges exhibiting signs of significant deterioration. This problem has increased the demand for effective maintenance and renewal planning. In order to implement an appropriate management procedure for a structure, a wide array of corrective strategies must be evaluated with respect to not only the condition state of each defect but also safety, economy and sustainability. This paper describes a new performance evaluation system for existing concrete bridges. The system evaluates performance based on load carrying capability and durability from the results of a visual inspection and specification data, and describes the necessity of maintenance. It categorizes all girders and slabs as either unsafe, severe deterioration, moderate deterioration, mild deterioration, or safe. The technique employs an expert system with an appropriate knowledge base in the evaluation. A characteristic feature of the system is the use of neural networks to evaluate the performance and facilitate refinement of the knowledge base. The neural network proposed in the present study has the capability to prevent an inference process and knowledge base from becoming a black box. It is very important that the system is capable of detailing how the performance is calculated since the road network represents a huge investment. The effectiveness of the neural network and machine learning method is verified by comparing diagnostic results by bridge experts.

Fuzzy추론 시스템과 신경회로망을 결합한 하천유출량 예측 (Runoff Forecasting Model by the Combination of Fuzzy Inference System and Neural Network)

  • 허창환;임기석
    • 한국농공학회논문집
    • /
    • 제49권3호
    • /
    • pp.21-31
    • /
    • 2007
  • This study is aimed at the development of a runoff forecasting model by using the Fuzzy inference system and Neural Network model to solve the uncertainties occurring in the process of rainfall-runoff modeling and improve the modeling accuracy of the stream runoff forecasting. The Neuro-Fuzzy (NF) model were used in this study. The NF model, recently received a great deal of attention, improve the existing Neural Networks by the aid of the Fuzzy theory applied to each node. The study area is the downstreams of Naeseung-chun. Therefore, time-dependent data was obtained from the Wolpo water level gauging station. 11 and 2 out of total 13 flood events were selected for the training and testing set of model respectively. The schematic diagram method and the statistical analysis are conducted to evaluate the feasibility of rainfall-runoff modeling. The model accuracy was rapidly decreased as the forecasting time became longer. The NF model can give accurate runoff forecasts up to 4 hours ahead in standard above the Determination coefficient $(R^2)$ 0.7. In the comparison of the runoff forecasting using the NF and TANK models, characteristics of peak runoff in the TANK model was higher than ones in the NF models, but peak values of hydrograph in the NF models were similar.

지식기반신경망에서 은닉노드삽입을 이용한 영역이론정련화 (Theory Refinements in Knowledge-based Artificial Neural Networks by Adding Hidden Nodes)

  • 심동희
    • 한국정보처리학회논문지
    • /
    • 제3권7호
    • /
    • pp.1773-1780
    • /
    • 1996
  • 인공지능의 기호적 방법과 수치적 방법을 결합한 지식기반신경망은 다른 기계 학 습모델보다 우수한 성능을 나타내고 있다. 그러나 지식기반신경망은 신경망으로 형성 된 후 동적으로 그 구조를 변경할 수 없어서 영역이론정련화 기능을 갖추지 못하였다. 지식기반신경망의 이러한 단점을 보완하기 위하여 TopGen 알고리즘이 제안되었으나 삽입된 은닉노드를 모두 입력 노드에 연결한 점, 빔탐색을 이용한 등의 문제를 안고 있다. 본 논문에서는 TopGen의 문제점을 해소하기 위하여 은닉 노드를 다음 하위계층 의 노드에 링크 시켰으며, 역추적을 허용한 언덕 오르기를 이용하는 알고리즘을 설계 하였다.

  • PDF

뉴럴 네트워크를 이용한 지능형 통합 제어 시스템 설계 (Design of an Intelligent Integrated Control System Using Neural Network)

  • 정동연;김경년;이정호;김원일;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.381-386
    • /
    • 2002
  • In this paper, we have proposed a new approach to the design of robot vision system to develop the technology for the automatic test and assembling of precision mechanical and electronic parts for the factory automation. In order to perform real time implementation of the automatic assembling tasks in the complex processes, we have developed an intelligent control algorithm based-on neural networks control theory to enhance the precise motion control. Implementing of the automatic test tasks has been performed by the real-time vision algorithm based-on TMS320C31 DSPs. It distinguishes correctly the difference between the acceptable and unacceptable defective item through pattern recognition of parts by the developed vision algorithm. Finally, the performance of proposed robot vision system has been illustrated by experiment for the similar model of fifth cell among the twelve cell for automatic test and assembling in S company.

  • PDF