• Title/Summary/Keyword: Neural Network Language Model

Search Result 170, Processing Time 0.023 seconds

A Text Content Classification Using LSTM For Objective Category Classification

  • Noh, Young-Dan;Cho, Kyu-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.5
    • /
    • pp.39-46
    • /
    • 2021
  • AI is deeply applied to various algorithms that assists us, not only daily technologies like translator and Face ID, but also contributing to innumerable fields in industry, due to its dominance. In this research, we provide convenience through AI categorization, extracting the only data that users need, with objective classification, rather than verifying all data to find from the internet, where exists an immense number of contents. In this research, we propose a model using LSTM(Long-Short Term Memory Network), which stands out from text classification, and compare its performance with models of RNN(Recurrent Neural Network) and BiLSTM(Bidirectional LSTM), which is suitable structure for natural language processing. The performance of the three models is compared using measurements of accuracy, precision, and recall. As a result, the LSTM model appears to have the best performance. Therefore, in this research, text classification using LSTM is recommended.

Language-based Classification of Words using Deep Learning (딥러닝을 이용한 언어별 단어 분류 기법)

  • Zacharia, Nyambegera Duke;Dahouda, Mwamba Kasongo;Joe, Inwhee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.411-414
    • /
    • 2021
  • One of the elements of technology that has become extremely critical within the field of education today is Deep learning. It has been especially used in the area of natural language processing, with some word-representation vectors playing a critical role. However, some of the low-resource languages, such as Swahili, which is spoken in East and Central Africa, do not fall into this category. Natural Language Processing is a field of artificial intelligence where systems and computational algorithms are built that can automatically understand, analyze, manipulate, and potentially generate human language. After coming to discover that some African languages fail to have a proper representation within language processing, even going so far as to describe them as lower resource languages because of inadequate data for NLP, we decided to study the Swahili language. As it stands currently, language modeling using neural networks requires adequate data to guarantee quality word representation, which is important for natural language processing (NLP) tasks. Most African languages have no data for such processing. The main aim of this project is to recognize and focus on the classification of words in English, Swahili, and Korean with a particular emphasis on the low-resource Swahili language. Finally, we are going to create our own dataset and reprocess the data using Python Script, formulate the syllabic alphabet, and finally develop an English, Swahili, and Korean word analogy dataset.

Word Segmentation and POS tagging using Seq2seq Attention Model (seq2seq 주의집중 모델을 이용한 형태소 분석 및 품사 태깅)

  • Chung, Euisok;Park, Jeon-Gue
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.217-219
    • /
    • 2016
  • 본 논문은 형태소 분석 및 품사 태깅을 위해 seq2seq 주의집중 모델을 이용하는 접근 방법에 대하여 기술한다. seq2seq 모델은 인코더와 디코더로 분할되어 있고, 일반적으로 RNN(recurrent neural network)를 기반으로 한다. 형태소 분석 및 품사 태깅을 위해 seq2seq 모델의 학습 단계에서 음절 시퀀스는 인코더의 입력으로, 각 음절에 해당하는 품사 태깅 시퀀스는 디코더의 출력으로 사용된다. 여기서 음절 시퀀스와 품사 태깅 시퀀스의 대응관계는 주의집중(attention) 모델을 통해 접근하게 된다. 본 연구는 사전 정보나 자질 정보와 같은 추가적 리소스를 배제한 end-to-end 접근 방법의 실험 결과를 제시한다. 또한, 디코딩 단계에서 빔(beam) 서치와 같은 추가적 프로세스를 배제하는 접근 방법을 취한다.

  • PDF

Mild Cognitive Impairment Prediction Model of Elderly in Korea Using Restricted Boltzmann Machine (제한된 볼츠만 기계학습 알고리즘을 이용한 우리나라 지역사회 노인의 경도인지장애 예측모형)

  • Byeon, Haewon
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.8
    • /
    • pp.248-253
    • /
    • 2019
  • Early diagnosis of mild cognitive impairment (MCI) can reduce the incidence of dementia. This study developed the MCI prediction model for the elderly in Korea. The subjects of this study were 3,240 elderly (1,502 men, 1,738 women) aged 65 and over who participated in the Korean Longitudinal Survey of Aging (KLoSA) in 2012. Outcome variables were defined as MCI prevalence. Explanatory variables were age, marital status, education level, income level, smoking, drinking, regular exercise more than once a week, average participation time of social activities, subjective health, hypertension, diabetes Respectively. The prediction model was developed using Restricted Boltzmann Machine (RBM) neural network. As a result, age, sex, final education, subjective health, marital status, income level, smoking, drinking, regular exercise were significant predictors of MCI prediction model of rural elderly people in Korea using RBM neural network. Based on these results, it is required to develop a customized dementia prevention program considering the characteristics of high risk group of MCI.

Neural Model for Named Entity Recognition Considering Aligned Representation

  • Sun, Hongyang;Kim, Taewhan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.613-616
    • /
    • 2018
  • Sequence tagging is an important task in Natural Language Processing (NLP), in which the Named Entity Recognition (NER) is the key issue. So far the most widely adopted model for NER in NLP is that of combining the neural network of bidirectional long short-term memory (BiLSTM) and the statistical sequence prediction method of Conditional Random Field (CRF). In this work, we improve the prediction accuracy of the BiLSTM by supporting an aligned word representation mechanism. We have performed experiments on multilingual (English, Spanish and Dutch) datasets and confirmed that our proposed model outperformed the existing state-of-the-art models.

DEVELOPING THE CLOUD DETECTION ALGORITHM FOR COMS METEOROLOGICAL DATA PROCESSING SYSTEM

  • Chung, Chu-Yong;Lee, Hee-Kyo;Ahn, Hyun-Jung;Ahn, Hyoung-Hwan;Oh, Sung-Nam
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.200-203
    • /
    • 2006
  • Cloud detection algorithm is being developed as major one of the 16 baseline products of CMDPS (COMS Meteorological Data Processing System), which is under development for the real-time application of data will be observed from COMS Meteorological Imager. For cloud detection from satellite data, we studied two different algorithms. One is threshold technique based algorithm, which is traditionally used, and another is artificial neural network model. MPEF scene analysis algorithm is the basic idea of threshold cloud detection algorithm, and some modifications are conducted for COMS. For the neural network, we selected MLP with back-propagation algorithm. Prototype software of each algorithm was completed and evaluated by using the MTSAT-1R and GOES-9 data. Currently the software codes are standardized using Fortran90 language. For the preparation as an operational algorithm, we will setup the validation strategy and tune up the algorithm continuously. This paper shows the outline of the two cloud detection algorithm and preliminary test result of both algorithms.

  • PDF

Developing the Cloud Detection Algorithm for COMS Meteorolgical Data Processing System

  • Chung, Chu-Yong;Lee, Hee-Kyo;Ahn, Hyun-Jung;Ahn, Myoung-Hwan;Oh, Sung-Nam
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.367-372
    • /
    • 2006
  • Cloud detection algorithm is being developed as primary one of the 16 baseline products of CMDPS (COMS Meteorological Data Processing System), which is under development for the real-time application of data will be observed from COMS Meteorological Imager. For cloud detection from satellite data, we studied two different algorithms. One is threshold technique based algorithm, which is traditionally used, and another is artificial neural network model. MPEF scene analysis algorithm is the basic idea of threshold cloud detection algorithm, and some modifications are conducted for COMS. For the neural network, we selected MLP with back-propagation algorithm. Prototype software of each algorithm was completed and evaluated by using the MTSAT-IR and GOES-9 data. Currently the software codes are standardized using Fortran90 language. For the preparation as an operational algorithm, we will setup the validation strategy and tune up the algorithm continuously. This paper shows the outline of the two cloud detection algorithms and preliminary test results of both algorithms.

Psalm Text Generator Comparison Between English and Korean Using LSTM Blocks in a Recurrent Neural Network (순환 신경망에서 LSTM 블록을 사용한 영어와 한국어의 시편 생성기 비교)

  • Snowberger, Aaron Daniel;Lee, Choong Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.269-271
    • /
    • 2022
  • In recent years, RNN networks with LSTM blocks have been used extensively in machine learning tasks that process sequential data. These networks have proven to be particularly good at sequential language processing tasks by being more able to accurately predict the next most likely word in a given sequence than traditional neural networks. This study trained an RNN / LSTM neural network on three different translations of 150 biblical Psalms - in both English and Korean. The resulting model is then fed an input word and a length number from which it automatically generates a new Psalm of the desired length based on the patterns it recognized while training. The results of training the network on both English text and Korean text are compared and discussed.

  • PDF

A Study on a Non-Voice Section Detection Model among Speech Signals using CNN Algorithm (CNN(Convolutional Neural Network) 알고리즘을 활용한 음성신호 중 비음성 구간 탐지 모델 연구)

  • Lee, Hoo-Young
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.33-39
    • /
    • 2021
  • Speech recognition technology is being combined with deep learning and is developing at a rapid pace. In particular, voice recognition services are connected to various devices such as artificial intelligence speakers, vehicle voice recognition, and smartphones, and voice recognition technology is being used in various places, not in specific areas of the industry. In this situation, research to meet high expectations for the technology is also being actively conducted. Among them, in the field of natural language processing (NLP), there is a need for research in the field of removing ambient noise or unnecessary voice signals that have a great influence on the speech recognition recognition rate. Many domestic and foreign companies are already using the latest AI technology for such research. Among them, research using a convolutional neural network algorithm (CNN) is being actively conducted. The purpose of this study is to determine the non-voice section from the user's speech section through the convolutional neural network. It collects the voice files (wav) of 5 speakers to generate learning data, and utilizes the convolutional neural network to determine the speech section and the non-voice section. A classification model for discriminating speech sections was created. Afterwards, an experiment was conducted to detect the non-speech section through the generated model, and as a result, an accuracy of 94% was obtained.

Korean Text to Gloss: Self-Supervised Learning approach

  • Thanh-Vu Dang;Gwang-hyun Yu;Ji-yong Kim;Young-hwan Park;Chil-woo Lee;Jin-Young Kim
    • Smart Media Journal
    • /
    • v.12 no.1
    • /
    • pp.32-46
    • /
    • 2023
  • Natural Language Processing (NLP) has grown tremendously in recent years. Typically, bilingual, and multilingual translation models have been deployed widely in machine translation and gained vast attention from the research community. On the contrary, few studies have focused on translating between spoken and sign languages, especially non-English languages. Prior works on Sign Language Translation (SLT) have shown that a mid-level sign gloss representation enhances translation performance. Therefore, this study presents a new large-scale Korean sign language dataset, the Museum-Commentary Korean Sign Gloss (MCKSG) dataset, including 3828 pairs of Korean sentences and their corresponding sign glosses used in Museum-Commentary contexts. In addition, we propose a translation framework based on self-supervised learning, where the pretext task is a text-to-text from a Korean sentence to its back-translation versions, then the pre-trained network will be fine-tuned on the MCKSG dataset. Using self-supervised learning help to overcome the drawback of a shortage of sign language data. Through experimental results, our proposed model outperforms a baseline BERT model by 6.22%.