• 제목/요약/키워드: Neural Network Classifier

검색결과 492건 처리시간 0.025초

간 경변 진단시 신경망을 이용한 분류기 구현 (Implementation of the Classification using Neural Network in Diagnosis of Liver Cirrhosis)

  • 박병래
    • 지능정보연구
    • /
    • 제11권1호
    • /
    • pp.17-33
    • /
    • 2005
  • 자기공명영상과 계층적 신경망을 이용하여 간경변증을 단계별로 분류하고자 하였다. 내원한 231명의 데이터를 분석하였으며, 각 단계별 분류는 정상,1, 2, 3단계로 분류하였다. TI강조 자기공명 간 영상으로부터 정상 간 실질과 간 경변 결절을 추출하고, 간 경화증의 단계를 객관적으로 해석 분류하였다. 간 경변 분류기 구현은 계층적 신경망을 이용하였고, 명암도 분석과 간 결절 특성을 통하여 정상간과 3단계의 간 경변으로 구분하였다. 제안한 신경망 분류기는 오류 역전파 알고리듬을 이용하였다. 분류결과 인식율이 정상군은 $100\%$, 1 단계는 $82.8\%$, 2 단계는 $87.1\%$, 3 단계는 $84.2\%$의 분류율을 나타내었다. 신경망 분류 결과와 전문의 판독 결과를 서로 비교한 결과 인식률은 매우 높게 나타났다. 만일 더욱더 충분한 데이터나 파라미터를 가지고 지속적으로 수행한다면 간 경변 환자들에게 임상적으로 지원하는 도구뿐만 아니라 의료전문 신경망으로도 기대된다.

  • PDF

토지피복분류에 있어 신경망과 최대우도분류기의 비교 (A comparison of neural networks and maximum likelihood classifier for the classification of land-cover)

  • 전형섭;조기성
    • 대한공간정보학회지
    • /
    • 제8권2호
    • /
    • pp.23-33
    • /
    • 2000
  • 본 연구에서는 인공위성영상을 이용한 토지피복 분류방법 중 파라메트릭한 분류와 비-파라메트릭한 분류의 대표성을 띤 최대우도 분류법과 신경망을 이용한 분류방법을 사용하여 분류정확도를 비교하였다. 분류정확도의 평가에 있어서 일반적인 분석가들이 사용하는 훈련지역에 대한 분류정확도의 분석뿐만 아니라, 시험지역에 대한 정확도분석을 하였다. 그 결과, 최대우도분류기에 비하여 신경망의 분류기가 일반적인 훈련데이터의 분류에 있어서 약 3% 우월하였으며, 지상검증데이터를 사용한 분류결과에서는 시험에 사용된 두 분류기 모두 빈약한 분류결과를 나타내었으나, 신경망에 의한 분류가 최대우도에 비하여 약 10%정도 보다 신뢰할 수 있는 결과를 얻을 수 있었다.

  • PDF

냉연강판의 표면결함 분류를 위한 신경망 분류기 개발 (Development of a Neural Network Classifier for the Classification of Surface Defects of Cold Rolled Strips)

  • 문창인;최세호;김기범;김철호;주원종
    • 한국정밀공학회지
    • /
    • 제24권4호
    • /
    • pp.76-83
    • /
    • 2007
  • A new neural network classifier is proposed for the automatic real-time surface inspection of high-speed cold steel strips having 11 different types of defects. 46 geometrical and gray-level features are extracted for the defect classification. 3241 samples of Posco's Kwangyang steel factory are used for training and testing the neural network classifier. The developed classifier produces plausible 15% error rate which is much better than 20-30% error rate of human vision inspection adopted in most of domestic steel factories.

초음파신호의 신경망 형상인식법을 이용한 오스테나이트 스테인레스강의 용접부결함 분류에 관한 연구 (Classification of Welding Defects in Austenitic Stainless Steel by Neural Pattern Recognition of Ultrasonic Signal)

  • 이강용;김준섭
    • 대한기계학회논문집A
    • /
    • 제20권4호
    • /
    • pp.1309-1319
    • /
    • 1996
  • The research for the classification of the natural defects in welding zone is performd using the neuro-pattern recognition technology. The signal pattern recognition package including the user's defined function is developed to perform the digital signal processing, feature extraction, feature selection and classifier selection, The neural network classifier and the statistical classifiers such as the linear discriminant function classifier and the empirical Bayesian calssifier are compared and discussed. The neuro-pattern recognition technique is applied to the classificaiton of such natural defects as root crack, incomplete penetration, lack of fusion, slag inclusion, porosity, etc. If appropriately learned, the neural network classifier is concluded to be better than the statistical classifiers in the classification of the natural welding defects.

신경회로망을 이용한 염색체 영상의 최적 패턴 분류기 구현 (Implementation on Optimal Pattern Classifier of Chromosome Image using Neural Network)

  • 장용훈;이권순;정형환;엄상희;이영우;전계록
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.290-294
    • /
    • 1997
  • Chromosomes, as the genetic vehicles, provide the basic material for a large proportion of genetic investigations. The human chromosome analysis is widely used to diagnose genetic disease and various congenital anomalies. Many researches on automated chromosome karyotype analysis has been carried out, some of which produced commercial systems. However, there still remains much room for improving the accuracy of chromosome classification. In this paper, we propose an optimal pattern classifier by neural network to improve the accuracy of chromosome classification. The proposed pattern classifier was built up of two-step multi-layer neural network(TMANN). We are employed three morphological feature parameters ; centromeric index(C.I.), relative length ratio(R.L.), and relative area ratio(R.A.), as input in neural network by preprocessing twenty human chromosome images. The results of our experiments show that our TMANN classifier is much more useful in neural network learning and successful in chromosome classification than the other classification methods.

  • PDF

신경망 운영특성곡선을 이용한 최적의 뇌파 및 Artifact 분류기 구성 (Development of an Optimal EEG and Artifact Classifier Using Neural Network Operating Characteristics)

  • 이택용;안창범;이성훈
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1995년도 춘계학술대회
    • /
    • pp.160-163
    • /
    • 1995
  • An optimal EEG and artifact classifier is proposed using neural network operating characteristics. The neural network operating characteristics are two dimensional parametric representations of the right and false identification probabilities of the network classifier. Since the EEG and EP signals acquired from multi -channel electrodes placed on the head surface are often interfered by other relatively large physiological signals such as electromyogram (EMG) or electroculogram (EOG), the removal of the artifact-affected EEGs is one of the key elements in neuro-functional mapping. Conventionally this task has been carried out by human experts spending lots of examination time. Using the neural-network based classification, human expert's efforts and time can be substantially reduced. From experiments, the neural-network based classification performs as good as human experts: variation of decisions between the neural network and human expert appears even smaller than that between human experts.

  • PDF

뇌파의 감성 분류기로서 다층 퍼셉트론의 활용에 관한 연구 (A Study on Application of the Multi-layor Perceptron to the Human Sensibility Classifier with Eletroencephalogram)

  • 김동준
    • 전기학회논문지
    • /
    • 제67권11호
    • /
    • pp.1506-1511
    • /
    • 2018
  • This study presents a human sensibility evaluation method using neural network and multiple-template method on electroencephalogram(EEG). We used a multi-layer perceptron type neural network as the sensibility classifier using EEG signal. For our research objective, 10-channel EEG signals are collected from the healthy subjects. After the necessary preprocessing is performed on the acquired signals, the various EEG parameters are estimated and their discriminating performance is evaluated in terms of pattern classification capability. In our study, Linear Prediction(LP) coefficients are utilized as the feature parameters extracting the characteristics of EEG signal, and a multi-layer neural network is used for indicating the degree of human sensibility. Also, the estimation for human comfortableness is performed by varying temperature and humidity environment factors and our results showed that the proposed scheme achieved good performances for evaluation of human sensibility.

Land use classification using CBERS-1 data

  • Wang, Huarui;Liu, Aixia;Lu, Zhenhjun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.709-714
    • /
    • 2002
  • This paper discussed and analyzed results of different classification algorithms for land use classification in arid and semiarid areas using CBERS-1 image, which in case of our study is Shihezi Municipality, Xinjiang Province. Three types of classifiers are included in our experiment, including the Maximum Likelihood classifier, BP neural network classifier and Fuzzy-ARTMAP neural network classifier. The classification results showed that the classification accuracy of Fuzzy-ARTMAP was the best among three classifiers, increased by 10.69% and 6.84% than Maximum likelihood and BP neural network, respectively. Meanwhile, the result also confirmed the practicability of CBERS-1 image in land use survey.

  • PDF

SVM과 신경회로망을 이용한 비선형시스템의 고장감지와 분류방법 연구 (A Study on a Fault Detection and Isolation Method of Nonlinear Systems using SVM and Neural Network)

  • 이인수;조정환;서해문;남윤석
    • 제어로봇시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.540-545
    • /
    • 2012
  • In this paper, we propose a fault diagnosis method using artificial neural network and SVM (Support Vector Machine) to detect and isolate faults in the nonlinear systems. The proposed algorithm consists of two main parts: fault detection through threshold testing using a artificial neural network and fault isolation by SVM fault classifier. In the proposed method a fault is detected when the errors between the actual system output and the artificial neural network nominal system output cross a predetermined threshold. Once a fault in the nonlinear system is detected the SVM fault classifier isolates the fault. The computer simulation results demonstrate the effectiveness of the proposed SVM and artificial neural network based fault diagnosis method.

Robust 2-D Object Recognition Using Bispectrum and LVQ Neural Classifier

  • HanSoowhan;woon, Woo-Young
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.255-262
    • /
    • 1998
  • This paper presents a translation, rotation and scale invariant methodology for the recognition of closed planar shape images using the bispectrum of a contour sequence and the learning vector quantization(LVQ) neural classifier. The contour sequences obtained from the closed planar images represent the Euclidean distance between the centroid and all boundary pixels of the shape, and are related to the overall shape of the images. The higher order spectra based on third order cumulants is applied to tihs contour sample to extract fifteen bispectral feature vectors for each planar image. There feature vector, which are invariant to shape translation, rotation and scale transformation, can be used to represent two0dimensional planar images and are fed into a neural network classifier. The LVQ architecture is chosen as a neural classifier because the network is easy and fast to train, the structure is relatively simple. The experimental recognition processes with eight different hapes of aircraft images are presented to illustrate the high performance of this proposed method even the target images are significantly corrupted by noise.

  • PDF