• Title/Summary/Keyword: Network-based health system

Search Result 422, Processing Time 0.023 seconds

Prediction Model of User Physical Activity using Data Characteristics-based Long Short-term Memory Recurrent Neural Networks

  • Kim, Joo-Chang;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2060-2077
    • /
    • 2019
  • Recently, mobile healthcare services have attracted significant attention because of the emerging development and supply of diverse wearable devices. Smartwatches and health bands are the most common type of mobile-based wearable devices and their market size is increasing considerably. However, simple value comparisons based on accumulated data have revealed certain problems, such as the standardized nature of health management and the lack of personalized health management service models. The convergence of information technology (IT) and biotechnology (BT) has shifted the medical paradigm from continuous health management and disease prevention to the development of a system that can be used to provide ground-based medical services regardless of the user's location. Moreover, the IT-BT convergence has necessitated the development of lifestyle improvement models and services that utilize big data analysis and machine learning to provide mobile healthcare-based personal health management and disease prevention information. Users' health data, which are specific as they change over time, are collected by different means according to the users' lifestyle and surrounding circumstances. In this paper, we propose a prediction model of user physical activity that uses data characteristics-based long short-term memory (DC-LSTM) recurrent neural networks (RNNs). To provide personalized services, the characteristics and surrounding circumstances of data collectable from mobile host devices were considered in the selection of variables for the model. The data characteristics considered were ease of collection, which represents whether or not variables are collectable, and frequency of occurrence, which represents whether or not changes made to input values constitute significant variables in terms of activity. The variables selected for providing personalized services were activity, weather, temperature, mean daily temperature, humidity, UV, fine dust, asthma and lung disease probability index, skin disease probability index, cadence, travel distance, mean heart rate, and sleep hours. The selected variables were classified according to the data characteristics. To predict activity, an LSTM RNN was built that uses the classified variables as input data and learns the dynamic characteristics of time series data. LSTM RNNs resolve the vanishing gradient problem that occurs in existing RNNs. They are classified into three different types according to data characteristics and constructed through connections among the LSTMs. The constructed neural network learns training data and predicts user activity. To evaluate the proposed model, the root mean square error (RMSE) was used in the performance evaluation of the user physical activity prediction method for which an autoregressive integrated moving average (ARIMA) model, a convolutional neural network (CNN), and an RNN were used. The results show that the proposed DC-LSTM RNN method yields an excellent mean RMSE value of 0.616. The proposed method is used for predicting significant activity considering the surrounding circumstances and user status utilizing the existing standardized activity prediction services. It can also be used to predict user physical activity and provide personalized healthcare based on the data collectable from mobile host devices.

Self-Diagnosing Disease Classification System for Oriental Medical Science with Refined Fuzzy ART Algorithm (Refined Fuzzy ART 알고리즘을 이용한 한방 자가 질병 분류 시스템)

  • Kim, Kwang-Baek
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.7
    • /
    • pp.1-8
    • /
    • 2009
  • In this paper, we propose a home medical system that integrates a self-diagnosing disease classification system and a tele-consulting system by communication technology. The proposed disease classification system supports to self-diagnose the health condition based on oriental medical science using fuzzy neural network algorithm. The prepared database includes 72 different diseases and their associated symptoms based on a famous medical science book "Dong-eui-bo-gam". The proposed system extracts three most prospective diseases from user's symptoms by analyzing disease database with fuzzy neural network technology. Technically, user's symptoms are used as an input vector and the clustering algorithm based upon a fuzzy neural network is performed. The degree of fuzzy membership is computed for each probable cluster and the system infers the three most prospective diseases with their degree of membership. Such information should be sent to medical doctors via our tele-consulting system module. Finally a user can take an appropriate consultation via video images by a medical doctor. Oriental medical doctors verified the accuracy of disease diagnosing ability and the efficacy of overall system's plausibility in the real world.

Bone Suppression on Chest Radiographs for Pulmonary Nodule Detection: Comparison between a Generative Adversarial Network and Dual-Energy Subtraction

  • Kyungsoo Bae;Dong Yul Oh;Il Dong Yun;Kyung Nyeo Jeon
    • Korean Journal of Radiology
    • /
    • v.23 no.1
    • /
    • pp.139-149
    • /
    • 2022
  • Objective: To compare the effects of bone suppression imaging using deep learning (BSp-DL) based on a generative adversarial network (GAN) and bone subtraction imaging using a dual energy technique (BSt-DE) on radiologists' performance for pulmonary nodule detection on chest radiographs (CXRs). Materials and Methods: A total of 111 adults, including 49 patients with 83 pulmonary nodules, who underwent both CXR using the dual energy technique and chest CT, were enrolled. Using CT as a reference, two independent radiologists evaluated CXR images for the presence or absence of pulmonary nodules in three reading sessions (standard CXR, BSt-DE CXR, and BSp-DL CXR). Person-wise and nodule-wise performances were assessed using receiver-operating characteristic (ROC) and alternative free-response ROC (AFROC) curve analyses, respectively. Subgroup analyses based on nodule size, location, and the presence of overlapping bones were performed. Results: BSt-DE with an area under the AFROC curve (AUAFROC) of 0.996 and 0.976 for readers 1 and 2, respectively, and BSp-DL with AUAFROC of 0.981 and 0.958, respectively, showed better nodule-wise performance than standard CXR (AUAFROC of 0.907 and 0.808, respectively; p ≤ 0.005). In the person-wise analysis, BSp-DL with an area under the ROC curve (AUROC) of 0.984 and 0.931 for readers 1 and 2, respectively, showed better performance than standard CXR (AUROC of 0.915 and 0.798, respectively; p ≤ 0.011) and comparable performance to BSt-DE (AUROC of 0.988 and 0.974; p ≥ 0.064). BSt-DE and BSp-DL were superior to standard CXR for detecting nodules overlapping with bones (p < 0.017) or in the upper/middle lung zone (p < 0.017). BSt-DE was superior (p < 0.017) to BSp-DL in detecting peripheral and sub-centimeter nodules. Conclusion: BSp-DL (GAN-based bone suppression) showed comparable performance to BSt-DE and can improve radiologists' performance in detecting pulmonary nodules on CXRs. Nevertheless, for better delineation of small and peripheral nodules, further technical improvements are required.

Artificial neural fuzzy system and monitoring the process via IoT for optimization synthesis of nano-size polymeric chains

  • Hou, Shihao;Qiao, Luyu;Xing, Lumin
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.375-386
    • /
    • 2022
  • Synthesis of acrylate-based dispersion resins involves many parameters including temperature, ingredients concentrations, and rate of adding ingredients. Proper controlling of these parameters results in a uniform nano-size chain of polymer on one side and elimination of hazardous residual monomer on the other side. In this study, we aim to screen the process parameters via Internet of Things (IoT) to ensure that, first, the nano-size polymeric chains are in an acceptable range to acquire high adhesion property and second, the remaining hazardous substance concentration is under the minimum value for safety of public and personnel health. In this regard, a set of experiments is conducted to observe the influences of the process parameters on the size and dispersity of polymer chain and residual monomer concentration. The obtained dataset is further used to train an Adaptive Neural network Fuzzy Inference System (ANFIS) to achieve a model that predicts these two output parameters based on the input parameters. Finally, the ANFIS will return values to the automation system for further decisions on parameter adjustment or halting the process to preserve the health of the personnel and final product consumers as well.

The Design of Maternity Monitoring System Using USN in Maternity Hospital (USN을 이용한 산모 모니터링 시스템 모델 설계)

  • Lee, Seo-Joon;Sim, Hyun-Jin;Lee, A-Rom;Lee, Tae-Ro
    • Journal of Digital Convergence
    • /
    • v.11 no.5
    • /
    • pp.347-354
    • /
    • 2013
  • In contrast to the increase in demand for high quality healthcare, there is limited medical human resources such as doctors and nurses so an excessive amount of workload is being forced to them. Therefore, a patient monitoring system using USN(Ubiquitous Sensor Network) is becoming a solution. This paper proposes a patient monitoring system applying USN in maternity hospital to reduce the workload of nurses. According to the efficiency evaluation test based on the model of two university hospitals(S, K University Hospital) and their doctor's diagnosis, the results showed that under the circumstances that one nurse is in charge of 12 patients(6 normal delivery patients and 6 cesarean delivery patients), a total of 1,260 minutes of workload was saved during hospitalization period(5 days). Also, we compared the workload of nurses with or without our proposed system, and the figures showed that in case of normal delivery patients, the workload of nurses decreased by 50 minutes per patient, whereas in case of cesarean delivery patients, the workload of nurses decreased by 130 minutes per patient.

Structural Heal th Monitoring Based On Carbon Nanotube Composite Sensors (나노 센서를 이용한 구조물 건전성 감시 기법)

  • Kang, In-Pil;Lee, Jong-Won;Choi, Yeon-Sun;Schu1z Mark J.
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.613-619
    • /
    • 2006
  • This paper introduces a new structural health monitoring using a nano sensor. The sensor is made of nano smart composite material based on carbon nanotubes. The nano sensor is fabricated as a thin and narrow polymer film sensor that is bonded or deposited onto a structure. The electrochemical impedance and dynamic strain response of the neuron change due to deterioration of the structure where the sensor is located. A network of the long nano sensorcan form a structural neural system to provide large area coverage and an assurance of the operational health of a structure without the need for actuators and complex wave propagation analyses that are used with other methods.

  • PDF

Development of Mobility and Vitality Signal Monitoring System Based on ZigBee-PSTN Gateway for the Elderly (ZigBee-PSTN 기반의 독거노인 활동량 및 생체신호 모니터링 시스템 개발)

  • Choi, Kyung-Sun;Chun, Joong-Chang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.1
    • /
    • pp.9-14
    • /
    • 2016
  • Recently the number of the elderly who live alone are increasing more and more as the average life span is prolonged. The elderly are probably in danger at home without being helped due to external aggressions or sudden health problems. Accordingly, more and more interests are taken in medical welfare for the healthy life of the seniors. In this paper, we have developed a mobility and vitality signal monitoring system based on ZigBee-PSTN gateway for the elderly. This combination of ZigBee wireless sensor network and PSTN can be easily established even in the poor internet infrastructure as is usually common for the elderly, with the advantage of providing non-constrained monitoring feature. The research result can be extended to the future tele-medicine system.

Design and Implementation of M2M-based Smart Factory Management Systems that controls with Smart Phone (스마트폰과 연동되는 M2M 기반 스마트 팩토리 관리시스템의 설계 및 구현)

  • Park, Byoung-Seob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.189-196
    • /
    • 2011
  • The main issues of the researches are monitoring environment such as weather or temperature variation and natural accident, and sensor gateways which have mobile device, applications for mobile health care. In this paper, we propose the SFMS(Smart Factory Management System) that can effectively monitor and manage a green smart factory area based on M2M service and smart phone with android OS platform. The proposed system is performed based on the TinyOS-based IEEE 802.15.4 protocol stack. To validate system functionality, we built sensor network environments where were equipped with four application sensors such as Temp/Hum, PIR, door, and camera sensor. We also built and tested the SFMS system to provide a novel model for event detection systems with smart phone.

HFN-Based Right Management for IoT Health Data Sharing (IoT 헬스 데이터 공유를 위한 HFN 기반 권한 관리)

  • Kim, Mi-sun;Park, Yongsuk;Seo, Jae-Hyun
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.88-98
    • /
    • 2021
  • As blockchain technology has emerged as a security issue for IoT, technology which integrates block chain into IoT is being studied. In this paper is a research concerning token-based IoT service access control technology for data sharing, which propose a possessor focused data sharing technic by using the permissioned blockchain. To share IoT health data, a Hyperledger Fabric Network consisting of three organizations was designed to provide a way to share data by applying different access control policies centered on device owners for different services. In the proposed system, the device owner issues access control tokens with different security levels applied to the participants in the organization, and the token issue information is shared through the distributed ledger of the HFN. In IoT, it is possible to lightweight the access control processing of IoT devices by granting tokens to service requesters who request access to data. Furthmore, by sharing token issuance information among network participants using HFN, the integrity of the token is guaranteed and all network participants can trust the token. The device owners can trust that their data is being used within their authorized rights, and control the collection and use of data.

Performance Evaluation of Wavelet-based ECG Compression Algorithms over CDMA Networks (CDMA 네트워크에서의 ECG 압축 알고리즘의 성능 평가)

  • 김병수;유선국
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.9
    • /
    • pp.663-669
    • /
    • 2004
  • The mobile tole-cardiology system is the new research area that support an ubiquitous health care based on mobile telecommunication networks. Although there are many researches presenting the modeling concepts of a GSM-based mobile telemedical system, practical application needs to be considered both compression performance and error corruption in the mobile environment. This paper evaluates three wavelet ECG compression algorithms over CDMA networks. The three selected methods are Rajoub using EPE thresholding, Embedded Zerotree Wavelet(EZW) and Wavelet transform Higher Order Statistics Coding(WHOSC) with linear prediction. All methodologies protected more significant information using Forward Error Correction coding and measured not only compression performance in noise-free but also error robustness and delay profile in CDMA environment. In addition, from the field test we analyzed the PRD for movement speed and the features of CDMA 1X. The test results show that Rajoub has low robustness over high error attack and EZW contributes to more efficient exploitation in variable bandwidth and high error. WHOSC has high robustness in overall BER but loses performance about particular abnormal ECG.