• 제목/요약/키워드: Network validation

검색결과 625건 처리시간 0.027초

Development and Validation of a Deep Learning System for Segmentation of Abdominal Muscle and Fat on Computed Tomography

  • Hyo Jung Park;Yongbin Shin;Jisuk Park;Hyosang Kim;In Seob Lee;Dong-Woo Seo;Jimi Huh;Tae Young Lee;TaeYong Park;Jeongjin Lee;Kyung Won Kim
    • Korean Journal of Radiology
    • /
    • 제21권1호
    • /
    • pp.88-100
    • /
    • 2020
  • Objective: We aimed to develop and validate a deep learning system for fully automated segmentation of abdominal muscle and fat areas on computed tomography (CT) images. Materials and Methods: A fully convolutional network-based segmentation system was developed using a training dataset of 883 CT scans from 467 subjects. Axial CT images obtained at the inferior endplate level of the 3rd lumbar vertebra were used for the analysis. Manually drawn segmentation maps of the skeletal muscle, visceral fat, and subcutaneous fat were created to serve as ground truth data. The performance of the fully convolutional network-based segmentation system was evaluated using the Dice similarity coefficient and cross-sectional area error, for both a separate internal validation dataset (426 CT scans from 308 subjects) and an external validation dataset (171 CT scans from 171 subjects from two outside hospitals). Results: The mean Dice similarity coefficients for muscle, subcutaneous fat, and visceral fat were high for both the internal (0.96, 0.97, and 0.97, respectively) and external (0.97, 0.97, and 0.97, respectively) validation datasets, while the mean cross-sectional area errors for muscle, subcutaneous fat, and visceral fat were low for both internal (2.1%, 3.8%, and 1.8%, respectively) and external (2.7%, 4.6%, and 2.3%, respectively) validation datasets. Conclusion: The fully convolutional network-based segmentation system exhibited high performance and accuracy in the automatic segmentation of abdominal muscle and fat on CT images.

원전SG 세관 결함크기 예측을 위한 신경회로망 구조에 관한 연구 (A Study on the Structure of Neural Network for Predicting Defect Size of Steam Generator Tube in Nuclear Power Plant)

  • 조남훈
    • 조명전기설비학회논문지
    • /
    • 제24권1호
    • /
    • pp.63-70
    • /
    • 2010
  • 본 논문에서는 원자력발전소 증기세관 크기 예측을 위한 신경회로망 구조에 대해서 연구한다. 와류탐상 시험(ECT) 신호로부터 특징을 추출한 후, 결함크기 예측을 위해서 다층퍼셉트론 신경회로망을 이용한다. 결함크기 예측성능을 최대화하기 위해서는 신경회로망의 구조, 특히 은닉층 내의 뉴런의 개수를 신중히 결정하여야 한다. 본 논문에서는, 결함크기 예측을 위한 은닉층 내의 뉴런의 개수를 교차검증을 이용하여 매우 효과적으로 결정할 수 있음을 보인다.

Feature Selection with Ensemble Learning for Prostate Cancer Prediction from Gene Expression

  • Abass, Yusuf Aleshinloye;Adeshina, Steve A.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권12spc호
    • /
    • pp.526-538
    • /
    • 2021
  • Machine and deep learning-based models are emerging techniques that are being used to address prediction problems in biomedical data analysis. DNA sequence prediction is a critical problem that has attracted a great deal of attention in the biomedical domain. Machine and deep learning-based models have been shown to provide more accurate results when compared to conventional regression-based models. The prediction of the gene sequence that leads to cancerous diseases, such as prostate cancer, is crucial. Identifying the most important features in a gene sequence is a challenging task. Extracting the components of the gene sequence that can provide an insight into the types of mutation in the gene is of great importance as it will lead to effective drug design and the promotion of the new concept of personalised medicine. In this work, we extracted the exons in the prostate gene sequences that were used in the experiment. We built a Deep Neural Network (DNN) and Bi-directional Long-Short Term Memory (Bi-LSTM) model using a k-mer encoding for the DNA sequence and one-hot encoding for the class label. The models were evaluated using different classification metrics. Our experimental results show that DNN model prediction offers a training accuracy of 99 percent and validation accuracy of 96 percent. The bi-LSTM model also has a training accuracy of 95 percent and validation accuracy of 91 percent.

Identification of key genes and functional enrichment analysis of liver fibrosis in nonalcoholic fatty liver disease through weighted gene co-expression network analysis

  • Yue Hu;Jun Zhou
    • Genomics & Informatics
    • /
    • 제21권4호
    • /
    • pp.45.1-45.11
    • /
    • 2023
  • Nonalcoholic fatty liver disease (NAFLD) is a common type of chronic liver disease, with severity levels ranging from nonalcoholic fatty liver to nonalcoholic steatohepatitis (NASH). The extent of liver fibrosis indicates the severity of NASH and the risk of liver cancer. However, the mechanism underlying NASH development, which is important for early screening and intervention, remains unclear. Weighted gene co-expression network analysis (WGCNA) is a useful method for identifying hub genes and screening specific targets for diseases. In this study, we utilized an mRNA dataset of the liver tissues of patients with NASH and conducted WGCNA for various stages of liver fibrosis. Subsequently, we employed two additional mRNA datasets for validation purposes. Gene set enrichment analysis (GSEA) was conducted to analyze gene function enrichment. Through WGCNA and subsequent analyses, complemented by validation using two additional datasets, we identified five genes (BICC1, C7, EFEMP1, LUM, and STMN2) as hub genes. GSEA analysis indicated that gene sets associated with liver metabolism and cholesterol homeostasis were uniformly downregulated. BICC1, C7, EFEMP1, LUM, and STMN2 were identified as hub genes of NASH, and were all related to liver metabolism, NAFLD, NASH, and related diseases. These hub genes might serve as potential targets for the early screening and treatment of NASH.

Cross-Validation Probabilistic Neural Network Based Face Identification

  • Lotfi, Abdelhadi;Benyettou, Abdelkader
    • Journal of Information Processing Systems
    • /
    • 제14권5호
    • /
    • pp.1075-1086
    • /
    • 2018
  • In this paper a cross-validation algorithm for training probabilistic neural networks (PNNs) is presented in order to be applied to automatic face identification. Actually, standard PNNs perform pretty well for small and medium sized databases but they suffer from serious problems when it comes to using them with large databases like those encountered in biometrics applications. To address this issue, we proposed in this work a new training algorithm for PNNs to reduce the hidden layer's size and avoid over-fitting at the same time. The proposed training algorithm generates networks with a smaller hidden layer which contains only representative examples in the training data set. Moreover, adding new classes or samples after training does not require retraining, which is one of the main characteristics of this solution. Results presented in this work show a great improvement both in the processing speed and generalization of the proposed classifier. This improvement is mainly caused by reducing significantly the size of the hidden layer.

도산 예측을 위한 러프집합이론과 인공신경망 통합방법론 (The Integrated Methodology of Rough Set Theory and Artificial Neural Network for Business Failure Prediction)

  • 김창연;안병석;조성식;김성희
    • Asia pacific journal of information systems
    • /
    • 제9권4호
    • /
    • pp.23-40
    • /
    • 1999
  • This paper proposes a hybrid intelligent system that predicts the failure of firms based on the past financial performance data, combining neural network and rough set approach, We can get reduced information table, which implies that the number of evaluation criteria such as financial ratios and qualitative variables and objects (i.e., firms) is reduced with no information loss through rough set approach. And then, this reduced information is used to develop classification rules and train neural network to infer appropriate parameters. Through the reduction of information table, it is expected that the performance of the neural network improve. The rules developed by rough sets show the best prediction accuracy if a case does match any of the rules. The rationale of our hybrid system is using rules developed by rough sets for an object that matches any of the rules and neural network for one that does not match any of them. The effectiveness of our methodology was verified by experiments comparing traditional discriminant analysis and neural network approach with our hybrid approach. For the experiment, the financial data of 2,400 Korean firms during the period 1994-1996 were selected, and for the validation, k-fold validation was used.

  • PDF

지터에 강건한 딥러닝 기반 프로파일링 부채널 분석 방안 (Robust Deep Learning-Based Profiling Side-Channel Analysis for Jitter)

  • 김주환;우지은;박소연;김수진;한동국
    • 정보보호학회논문지
    • /
    • 제30권6호
    • /
    • pp.1271-1278
    • /
    • 2020
  • 딥러닝 기반 프로파일링 부채널 분석은 신경망을 이용해 부채널 정보와 중간값의 관계를 파악하는 공격 방법이다. 신경망은 신호의 각 시점을 별도의 차원으로 해석하므로 차원별 가중치를 갖는 신경망은 지터가 있는 데이터의 분포를 학습하기 어렵다. 본 논문에서는 CNN(Convolutional Neural Network)의 완전연결 층을 GAP(Global Average Pooling)로 대체하면 태생적으로 지터에 강건한 신경망을 구성할 수 있음을 보인다. 이를 입증하기 위해 ChipWhisperer-Lite 전력 수집 보드에서 수집한 파형에 대해 실험한 결과 검증 데이터 집합에 대한 완전연결 층을 사용하는 CNN의 정확도는 최대 1.4%에 불과했으나, GAP를 사용하는 CNN의 정확도는 최대 41.7%로 매우 높게 나타났다.

네트워크 토폴로지에 따른 CAN-FD 통신 영향성 분석 (Performance Analysis of CAN-FD Based Network Against Network Topology)

  • 서석현
    • 대한임베디드공학회논문지
    • /
    • 제12권6호
    • /
    • pp.351-358
    • /
    • 2017
  • The most common communication interface for automotive electronic control devices is CAN (Controller Area Network). Sine CAN was first adopted to Daimler vehicles in 1991, all of automobile manufacturers use the CAN communication for in-vehicle networks. However, as the number of electronic control devices connected to the CAN network rapidly increases, the CAN protocol reaches the limit of technology. To overcome this limitation, Bosch introduced the new communication protocol, that is CAN-FD (Flexible Data-rate). In this paper, we analyze the characteristics and limitations of CAN-FD communication according to the topology under the in-vehicle wiring harness environment designed based on the existing classic CAN communication.

마이크로 에너지 네트워크의 중앙집중형 최적 운영 모델 (An Optimal Operation Model of A Centralized Micro-Energy Network)

  • 이지혜;김학만;임용훈;이재용
    • 전기학회논문지
    • /
    • 제62권10호
    • /
    • pp.1451-1457
    • /
    • 2013
  • Recently, new concept of energy systems such as microgrid, smart grid, supergrid, and energy network has been introducing. In this paper, the concept of the centralized micro-energy network, which is an energy community of a building group without district heating system, is introduced. In addition, a mathematical model for optimal operation of the micro-energy network as a main function of an energy management system (EMS) for the micro-energy network is proposed. In order to show the validation, the proposed model is tested through the simulation and analyzed.

Formal Validation Method and Tools for French Computerized Railway Interlocking Systems

  • Antoni, Marc
    • International Journal of Railway
    • /
    • 제2권3호
    • /
    • pp.99-106
    • /
    • 2009
  • Checks and tests before putting safety facilities into service as well as the results of these tests are essential, time consuming and may show great variations between each other. Economic constraints and the increasing complexity associated with the development of computerized tools tend to limit the capacity of the classic approval process (manual or automatic). A reduction of the validation cover rate could result in practice. This is not compatible with the French national plan to renew the interlocking systems of the national network. The method and the tool presented in this paper makes it possible to formally validate new computerized systems or evolutions of existing French interlocking systems with real-time functional interpreted Petri nets. The aim of our project is to provide SNCF with a method for the formal validation of French interlocking systems. A formal proof method by assertion, which is applicable to industrial automation equipment such as interlocking systems, and which covers equally the specification and its real software implementation, is presented in this paper. With the proposed method we completely verify that the system follows all safety properties at all times and does not show superfluous conditions: it replaces all the indoor checks (not the outdoor checks). The advantages expected are a significant reduction of testing time and of the related costs, an increase of the test coverage rate, an answer to the new demand of railway infrastructure maintenance engineering to modify and validate computerized interlocking systems. Formal methods mastery by infrastructure engineers are surely a key to prove that more safety is not necessarily more expensive.

  • PDF