• Title/Summary/Keyword: Network traffic control

Search Result 1,094, Processing Time 0.027 seconds

Adaptive Resource Allocation for Traffic Flow Control in Hybrid Networks

  • Son, Sangwoo;Rhee, Byungho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.1
    • /
    • pp.38-55
    • /
    • 2013
  • Wireless network systems provide fast data transmission rates and various services to users of mobile devices such as smartphones and smart pads. Because many people use high-performance mobile devices, the use of real-time multimedia services is increasing rapidly. However, the preoccupation of resources by real-time traffic users is causing harm to other services-for example, frequent call interference, lowered service quality, and poor network performance. This paper suggests a resource allocation algorithm for effective traffic service support in a hybrid network. The main objective is to obtain an optimum value of data rates by comparing user requirements with the amount of resources that can be allocated. A new mechanism based on Adaptive-Quality of Service (QoS) and a monitoring system based on Queue-Aware are proposed. Adaptive-QoS supports effective resource control according to the type of traffic service, and the monitoring system based on Queue-Aware measures the amount of resources in order to calculate the maximum that can be allocated. We apply our algorithm to a test system and use Qualnet 4.5.1 to evaluate its performance.

A congestion control scheme estimating global channel busy ratio in VANETs

  • Kim, Tae-won;Jung, Jae-il;Lee, Joo-young
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.115-122
    • /
    • 2017
  • In vehicular safety service, every vehicle broadcasts Basic Safety Message (BSM) periodically to inform neighbor vehicles of host vehicle information. However, this can cause network congestion in a region that is crowded with vehicles resulting in a reduction in the message delivery ratio and an increase in the end-to-end delay. Therefore, it could destabilize the vehicular safety service system. In this paper, in order to improve the congestion control and to consider the hidden node problem, we propose a congestion control scheme using entire network congestion level estimation combined with transmission power control, data rate control and time slot based transmission control algorithm. The performance of this scheme is evaluated using a Qualnet network simulator. The simulation result shows that our scheme mitigates network congestion in heavy traffic cases and enhances network capacity in light traffic cases, so that packet error rate is perfectly within 10% and entire network load level is maintained within 60~70%. Thus, it can be concluded that the proposed congestion control scheme has quite good performance.

Internet Traffic Control Using Dynamic Neural Networks

  • Cho, Hyun-Cheol;Fadali, M. Sami;Lee, Kwon-Soon
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.285-291
    • /
    • 2008
  • Active Queue Management(AQM) has been widely used for congestion avoidance in Transmission Control Protocol(TCP) networks. Although numerous AQM schemes have been proposed to regulate a queue size close to a reference level, most of them are incapable of adequately adapting to TCP network dynamics due to TCP's non-linearity and time-varying stochastic properties. To alleviate these problems, we introduce an AQM technique based on a dynamic neural network using the Back-Propagation(BP) algorithm. The dynamic neural network is designed to perform as a robust adaptive feedback controller for TCP dynamics after an adequate training period. We evaluate the performances of the proposed neural network AQM approach using simulation experiments. The proposed approach yields superior performance with faster transient time, larger throughput, and higher link utilization compared to two existing schemes: Random Early Detection(RED) and Proportional-Integral(PI)-based AQM. The neural AQM outperformed PI control and RED, especially in transient state and TCP dynamics variation.

A Web-based QoS-guaranteed Traffic Control system (웹 기반의 QoS 보장형 트래픽 제어 시스템)

  • 이명섭;신경철;류명춘;박찬현
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.45-48
    • /
    • 2002
  • This paper presents a QoS-guaranteed traffic control system which supports QoS of realtime packet transmission for the multimedia communication. The traffic control system presented in this paper applies the integrated service model and provides QoS o(packet transmission by means of determining the packet transmission rate with the policy of network manager and the optimal resource allocation according to the end-to-end traffic load. It also provides QoS for the realtime packet transmission through the AWF2Q+ Scheduling algorithm and per-class queuing method.

  • PDF

Traffic Engineering and Manageability for Multicast Traffic in Hybrid SDN

  • Ren, Cheng;Wang, Sheng;Ren, Jing;Wang, Xiong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2492-2512
    • /
    • 2018
  • Multicast communication can effectively reduce network resources consumption in contrast with unicast. With the advent of SDN, current researches on multicast traffic are mainly conducted in the SDN scenario, thus to mitigate the problems of IP multicast such as the unavoidable difficulty in traffic engineering and high security risk. However, migration to SDN cannot be achieved in one step, hybrid SDN emerges as a transitional networking form for ISP network. In hybrid SDN, for acquiring similar TE and security performance as in SDN multicast, we redirect every multicast traffic to an appropriate SDN node before reaching the destinations of the multicast group, thus to build up a core-based multicast tree substantially which is first introduced in CBT. Based on the core SDN node, it is possible to realize dynamic control over the routing paths to benefit traffic engineering (TE), while multicast traffic manageability can also be obtained, e.g., access control and middlebox-supported network services. On top of that, multiple core-based multicast trees are constructed for each multicast group by fully taking advantage of the routing flexibility of SDN nodes, in order to further enhance the TE performance. The multicast routing and splitting (MRS) algorithm is proposed whereby we jointly and efficiently determine an appropriate core SDN node for each group, as well as optimizing the traffic splitting fractions for the corresponding multiple core-based trees to minimize the maximum link utilization. We conduct simulations with different SDN deployment rate in real network topologies. The results indicate that, when 40% of the SDN switches are deployed in HSDN as well as calculating 2 trees for each group, HSDN multicast adopting MRS algorithm can obtain a comparable TE performance to SDN multicast.

Congestion Control of a Priority-Ordered Buffer for Video Streaming Services (영상 스트리밍 서비스를 위한 우선순위 버퍼 혼잡제어 알고리즘)

  • Kim, Seung-Hun;Choi, Jae-Won;Choi, Seung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4B
    • /
    • pp.227-233
    • /
    • 2007
  • According to the recent development of network technology, the demands of users are diversified and the needs of multimedia traffic are increasing. In general, UDP(User Datagram Protocol) traffic is used to transport multimedia data, which satisfied the real-time and isochronous characteristics. UDP traffic competes with TCP traffic and incur the network congestion. However, TCP traffic performs network congestion control but does not consider the receiver's status. Thus, it is not appropriate in case of streaming services. In this paper, we solve a fairness problems and proposed a network algorithm based on RTP/RTCP(Real-time Transport Protocol/Realtime Transport Control Protocol) in view of receiver status. The POBA(Priority Ordered Buffer Algorithm), which applies priorities in the receiver's buffer and networks, shows that it provides the appropriate environment for streaming services in view of packet loss ratio and buffer utilization of receiver's buffer compared with the previous method.

Traffic Control Algorithm for Periodic Traffics in WSN (WSN에서 주기적 트래픽 처리를 위한 트래픽 제어 알고리즘)

  • Kim, Jeonghye;Lee, Sungkeun;Koh, Jingwang;Park, Jaesung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.1
    • /
    • pp.44-50
    • /
    • 2010
  • Wireless sensor network is consist of multiple sensor nodes and performs a shared tasks through the coordination of sensor nodes. Traffic in WSN is categorized as periodical monitoring traffic, event-driven traffic and query-based traffic. Periodic traffic takes significant proportion of the whole traffic processing because multiple sensor nodes generate traffic in a steady interval although the generation frequency of periodic traffic is low. In this paper, we propose a traffic control algorithm of network protocol for periodic traffic in terms of energy efficiency and conduct performance analysis of the algorithm.

GOOSE Traffic Generator Using Network Emulation (네트워크 에뮬레이션을 이용한 GOOSE 트래픽 발생기)

  • Hwang, Sung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.209-214
    • /
    • 2016
  • IEC 61850 is a protocol used to reduce the cost of design, installation and maintenance of the Substation Automation System. GOOSE traffic used in IEC 61850 plays an important role for control, protection and automation of the substation. This study implemented a GOOSE traffic generator using the emulation function of NS-3 network simulator, by using protocols provided by a network simulator and another protocols provided by real communication equipment. The generated GOOSE traffic was analyzed with Wireshark, and it was found that the traffic was generated exactly as expected. Besides, this study measured the GOOSE traffic delay due to the increase of the number of switches according to network topology. It is expected that the GOOSE traffic generator implemented by this study will be efficiently used when experiments are performed on actual substation environments.

Study on Self-similiarity of Aggregated TCP-IP Traffic (다중화된 TCP-IP 트래픽의 자기유사성에 관한 연구)

  • Cho, Hyeon-Seob;Jun, Ho-Ik
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.138-141
    • /
    • 2010
  • Measurement of network traffic have shown that the self-similarity is a ubiquitous phenomenon spanning across diverse network environments. In previous work, we have explored the feasibility of exploiting the long-range correlation structure in a self-similar traffic for the congestion control. we show that a multiple time scale TCP endows the underlying feedback control with proactivity by bridging the uncertainty gap associated with reactive controls which is exacerbated by the high delay-bandwidth product in broadband wide area networks. Third, we investigate the influence of the three traffic control dimensions-tracking ability, connection duration, and fairness-on performance.

  • PDF

Transmission Rate Priority-based Traffic Control for Contents Streaming in Wireless Sensor Networks (무선 센서 네트워크에서 콘텐츠 스트리밍을 위한 전송율 우선순위 기반 트래픽제어)

  • Lee, Chong-Deuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3176-3183
    • /
    • 2011
  • Traffic and congestion control in the wireless sensor network is an important parameter that decides the throughput and QoS (Quality of Service). This paper proposes a transmission rate priority-based traffic control scheme to serve digital contents streaming in wireless sensor networks. In this paper, priority for transmission rate decides on the real-time traffic and non-real-time with burst time and length. This transmission rate-based priority creates low latency and high reliability so that traffic can be efficiently controlled when needed. Traffic control in this paper performs the service differentiation via traffic detection process, traffic notification process and traffic adjustment. The simulation results show that the proposed scheme achieves improved performance in delay rate, packet loss rate and throughput compared with those of other existing CCF and WCA.