We propose a new method to deal with the optimized auto-tuning for the PID controller which is used to the process-control in various fields. First of all, in this method, initial values are determined by the Switched Reluctance Motor of system and Ziegler-Nichols method. After deciding binary strings of parents generation using by the fitness values of genetic algorithms, we perform selection, crossover and mutation to generate the descendant generation. The advantage of this method is better than the neural network and multiple regression model method in characteristic of output, and has extent of applying without limit of initial parameters.
전력부하 설비시스템에 장치하는 퍼지제어기의 성능은 제어대상의 변화에 민감하여 제어대상이 바뀔때마다 퍼지 소속함수폭이나 제어규칙을 조정해야 한다. 본 논문은 퍼지제어기의 성능에 영향을 미치는 요소들을 종합적으로 고찰하여, 제어대상의 변화에 적응하여 최적의 퍼지 소속함수폭에 자동동조하는 다층 신경회로망을 사용한 성능이 개선된 뉴로퍼지제어기를 제안하여 구성하였다. 이것을 다양한 일차지연요소를 갖는 설비시스템의 시뮬fp에션을 하여 우수한 제어 특성을 확인하였다.
Nam Jing-Rak;Kim Min-Chan;Ahn Ho-Kyun;Kwak Gun-Pyong;Chung Chin-Young
Journal of information and communication convergence engineering
/
제3권1호
/
pp.43-48
/
2005
In this paper, the adaptive fuzzy logic controller(AFLC) is proposed, which uses real-coding genetic algorithm showing a good performance on convergence velocity and diversity of population among evolutionary computations. The effectiveness of the proposed AFLC was demonstrated by computer simulation for speed control system of AC servo motor. As a result of simulation for the AC servo motor, it is shown the proposed AFLC has the better performance on overshoot, settling time and rising time than the PI controller which is used when tuning AFLC.
Lee, Jaehwan;Choi, June;Roh, Hongchan;Shin, Ji Sun
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권11호
/
pp.5252-5268
/
2018
To support a large-scale Hadoop cluster, Hadoop heartbeat messages are designed to deliver the significant messages, including task scheduling and completion messages, via piggybacking to reduce the number of messages received by the NameNode. Although Hadoop is designed and optimized for high-throughput computing via batch processing, the real-time processing of large amounts of data in Hadoop is increasingly important. This paper evaluates Hadoop's performance and costs when the heartbeat period is controlled to support latency sensitive applications. Through an empirical study based on Hadoop 2.0 (YARN) architecture, we improve Hadoop's I/O performance as well as application performance by up to 13 percent compared to the default configuration. We offer a guideline that predicts the performance, costs and limitations of the total system by controlling the heartbeat period using simple equations. We show that Hive performance can be improved by tuning Hadoop's heartbeat periods through extensive experiments.
In this paper, we studied the response characteristics of $\alpha$, $\beta$ separated type, combined type, PI typed, and feedforward type in 2DOF-PID controller through the simulation and the experiments designed with the multivariable flow control system. The parameters $\alpha$ and $\beta$ give an affect to characteristics of controller in separated type but $\gamma$ does not give an affect to the characteristics of 2-DOF PID. The more $\beta$ increases, the more overshoot decreases and especially, in case of PI type represent clearly. The $\alpha$, $\beta$ separated type has a very small overshoot and its magnitudes in 2-DOF PID onctroller increases in order of $\alpha$, $\beta$ combined type, PI type, feedforward type, conventional type. The response characteristics of simulation are similar to that of experiments but the experimental characteristics in the multivariable flow control system has the delayed response. The time delay of response in experiments depends on 2-DOF parameter $\alpha$, $\beta$, $\gamma$ and the overshoot increase as the $\alpha$, $\beta$, $\gamma$ increase. So, we can have a satisfactory response by tuning D gain.
A novel combinatorial type-2 adaptive neuro-fuzzy inference system (T2-ANFIS) and robust proportional integral derivative (PID) control framework for intelligent vibration mitigation of uncertain structural system is introduced. The fuzzy logic controllers (FLCs), are designed independently of the mathematical model of the system. The type-1 FLCs, have a limited ability to reduce the effect of uncertainty, due to their fuzzy sets with a crisp degree of membership. In real applications, the consequent part of the fuzzy rules is uncertain. The type-2 FLCs, are robust to the fuzzy rules and the process parameters due to the fuzzy degree of membership functions and footprint of uncertainty (FOU). The adaptivity of the proposed method is provided with the optimum tuning of the parameters using the neural network training algorithms. In our approach, the PID control force is obtained using the generalized type-2 neuro-fuzzy in such a way that the stability and robustness of the controller are guaranteed. The robust performance and stability of the presented framework are demonstrated in a numerical study for an eleven-story seismically-excited building structure combined with an active tuned mass damper (ATMD). The results indicate that the introduced type-2 neuro-fuzzy PID control scheme is effective to attenuate plant states in the presence of the structured and unstructured uncertainties, compared to the conventional, type-1 FLC, type-2 FLC, and type-1 neuro-fuzzy PID controllers.
무선랜은 물리적으로 근접한 거리의 공격자나 장비에 의해 공격이 행해질 수 있으며, STA와 AP상의 라디오링크에 접근하는 공격자가 부가적인 메시지를 투입시킴으로서 정보를 수정할 수 있기 때문에 유선랜과 비교해 볼 때, 같은 공격 유형에서도 그 위험이 끼치는 영향의 파급정도는 더 클 수 있다. 따라서 무선랜의 인프라구조내에 있다는 것만으로 충분히 공격이 가능해지는 무선랜의 취약점을 보완하기 위해서 효과적인 침입탐지시스템의 도입이 요구된다. 기존의 무선랜에서의 침입탐지기법들은 유선에서 활용되던 SVM을 이용한 방법론등이 활용될 수 있으나, 이는 대용량의 무선 데이터셋의 이산형, 연속형 데이터 중에서, 중요한 침입여부 단서가 될 수 있는 연속형데이터는 활용할 수 없다는 단점을 가진다. 따라서 이 논문에서는 SVM과 데이터마이닝 기법을 혼합하여 무선랜을 위한 침입 탐지시스템을 설계하고 이에 대한 실험결과를 통해 우수성을 입증하고자 한다.
최근 COVID-19로 인해 마스크 착용 여부 자동 검사 시스템에 신경망 기술들을 적용하는 연구가 활발히 진행되고 있다. 신경망 적용 방식에 있어서 1단계 검출 방식 또는 2단계 검출 방식을 사용하며, 데이터를 충분히 확보할 수 없는 경우 사전 학습된 신경망에 대해 가중치 미세 조절 기법을 적용하여 학습한다. 본 논문에서는 얼굴 인식부와 마스크 검출부로 구성되는 2단계 검출 방식을 적용하였으며, 얼굴 인식부에는 MTCNN 모델, 마스크 검출부에는 ResNet 모델을 사용하였다. 마스크 검출부는 다양한 실 상황에서의 인식률과 추론 속도 향상을 위하여 5개의 ResNet모델을 적용하여 실험하였다. 학습 데이터는 웹 크롤러를 이용하여 수집한 17,219개의 정지 영상을 이용하였으며, 1,913개의 정지 영상과 1분 동영상 2개에 대해 각각 추론을 실시하였다. 실험 결과 정지 영상인 경우 96.39%, 동영상인 경우 92.98%의 높은 정확도를 보였고, 동영상 추론 속도는 10.78fps임을 확인하였다.
Intajag, S.;Tipsuwanporn, V.;Koetsam-ang, N.;Witheephanich, K.
제어로봇시스템학회:학술대회논문집
/
제어로봇시스템학회 2004년도 ICCAS
/
pp.546-551
/
2004
In this paper, a level controller is designed with the neuro-fuzzy model based on Takagi-Sugeno fuzzy system. The fuzzy system is employed as the controller, which can be tuned by the neural network mechanism based on a gradient descent technique. The tuning mechanism will provide an optimal process input by forcing the process error to zero. The proposed controller provides the online tunable mode to adjust the consequent membership function parameters. The controller is implemented with M-file and graphic user interface (GUI) of Matlab program. The program uses MPIBM3 interface card to connect with the industrial processes In the experimentation, the proposed method is tested to vary of the process parameters, set points and load disturbance. Processes of one tank and two tanks are used to evaluate the efficiency of our controller. The results of the both processes are compared with two PID systems that are 3G25A-PIDO1-E and E5AK of OMRON. From the comparison results, our controller performance can be archived in the case of more robustness than the two PID systems.
로봇 시스템의 신경망 포화 및 퍼지 데드존 보상기를 제안한다. 퍼지논리 함수의 분류특성과 신경회로망의 함수 근사화 능력은 포화와 데드존에 의해 유발되는 오자를 제거하기 위한 보상기 설계를 가능케 한다. 포화 및 데드존 보상이 적응적이고 추적오차와 파라미터 추정 치가 유계가 되는 신경망 가중치와 퍼지논리 파라미터 동조알리리듬과 안정도 증명을 제시한다. 신경망 포화 및 퍼지 데드존 보상기를 모의실험으로 포화 및 데드존의 해로운 영향을 줄이는 효과를 보여 준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.