• Title/Summary/Keyword: Network of Dynamic Probabilistic Models

Search Result 5, Processing Time 0.019 seconds

Hunan Interaction Recognition with a Network of Dynamic Probabilistic Models (동적 확률 모델 네트워크 기반 휴먼 상호 행동 인식)

  • Suk, Heung-Il;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.11
    • /
    • pp.955-959
    • /
    • 2009
  • In this paper, we propose a novel method for analyzing human interactions based on the walking trajectories of human subjects. Our principal assumption is that an interaction episode is composed of meaningful smaller unit interactions, which we call 'sub-interactions.' The whole interactions are represented by an ordered concatenation or a network of sub-interaction models. From the experiments, we could confirm the effectiveness and robustness of the proposed method by analyzing the inner workings of an interaction network and comparing the performance with other previous approaches.

Enhancing Network Service Survivability in Large-Scale Failure Scenarios

  • Izaddoost, Alireza;Heydari, Shahram Shah
    • Journal of Communications and Networks
    • /
    • v.16 no.5
    • /
    • pp.534-547
    • /
    • 2014
  • Large-scale failures resulting from natural disasters or intentional attacks are now causing serious concerns for communication network infrastructure, as the impact of large-scale network connection disruptions may cause significant costs for service providers and subscribers. In this paper, we propose a new framework for the analysis and prevention of network service disruptions in large-scale failure scenarios. We build dynamic deterministic and probabilistic models to capture the impact of regional failures as they evolve with time. A probabilistic failure model is proposed based on wave energy behaviour. Then, we develop a novel approach for preventive protection of the network in such probabilistic large-scale failure scenarios. We show that our method significantly improves uninterrupted delivery of data in the network and reduces service disruption times in large-scale regional failure scenarios.

Dynamic Bayesian Network Modeling and Reasoning Based on Ontology for Occluded Object Recognition of Service Robot (서비스 로봇의 가려진 물체 인식을 위한 온톨로지 기반 동적 베이지안 네트워크 모델링 및 추론)

  • Song, Youn-Suk;Cho, Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.2
    • /
    • pp.100-109
    • /
    • 2007
  • Object recognition of service robots is very important for most of services such as delivery, and errand. Conventional methods are based on the geometric models in static industrial environments, but they have limitations in indoor environments where the condition is changable and the movement of service robots occur because the interesting object can be occluded or small in the image according to their location. For solving these uncertain situations, in this paper, we propose the method that exploits observed objects as context information for predicting interesting one. For this, we propose the method for modeling domain knowledge in probabilistic frame by adopting Bayesian networks and ontology together, and creating knowledge model dynamically to extend reasoning models. We verify the performance of our method through the experiments and show the merit of inductive reasoning in the probabilistic model

qPALS: Quality-Aware Synchrony Protocol for Distributed Real-Time Systems

  • Kang, Woochul;Sha, Lui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3361-3377
    • /
    • 2014
  • Synchronous computing models provided by real-time synchrony protocols, such as TTA [1] and PALS [2], greatly simplify the design, implementation, and verification of real-time distributed systems. However, their application to real systems has been limited since their assumptions on underlying systems are hard to satisfy. In particular, most previous real-time synchrony protocols hypothesize the existence of underlying fault tolerant real-time networks. This, however, might not be true in most soft real-time applications. In this paper, we propose a practical approach to a synchrony protocol, called Quality-Aware PALS (qPALS), which provides the benefits of a synchronous computing model in environments where no fault-tolerant real-time network is available. qPALS supports two flexible global synchronization protocols: one tailored for the performance and the other for the correctness of synchronization. Hence, applications can make a negotiation flexibly between performance and correctness. In qPALS, the Quality-of-Service (QoS) on synchronization and consistency is specified in a probabilistic manner, and the specified QoS is supported under dynamic and unpredictable network environments via a control-theoretic approach. Our simulation results show that qPALS supports highly reliable synchronization for critical events while still supporting the efficiency and performance even when the underlying network is not stable.

Design and Realization of Precise Indoor Localization Mechanism for Wi-Fi Devices

  • Su, Weideng;Liu, Erwu;Auge, Anna Calveras;Garcia-Villegas, Eduard;Wang, Rui;You, Jiayi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5422-5441
    • /
    • 2016
  • Despite the abundant literature in the field, there is still the need to find a time-efficient, highly accurate, easy to deploy and robust localization algorithm for real use. The algorithm only involves minimal human intervention. We propose an enhanced Received Signal Strength Indicator (RSSI) based positioning algorithm for Wi-Fi capable devices, called the Dynamic Weighted Evolution for Location Tracking (DWELT). Due to the multiple phenomena affecting the propagation of radio signals, RSSI measurements show fluctuations that hinder the utilization of straightforward positioning mechanisms from widely known propagation loss models. Instead, DWELT uses data processing of raw RSSI values and applies a weighted posterior-probabilistic evolution for quick convergence of localization and tracking. In this paper, we present the first implementation of DWELT, intended for 1D location (applicable to tunnels or corridors), and the first step towards a more generic implementation. Simulations and experiments show an accuracy of 1m in more than 81% of the cases, and less than 2m in the 95%.