• Title/Summary/Keyword: Network by/for AI

Search Result 383, Processing Time 0.029 seconds

Region of Interest Localization for Bone Age Estimation Using Whole-Body Bone Scintigraphy

  • Do, Thanh-Cong;Yang, Hyung Jeong;Kim, Soo Hyung;Lee, Guee Sang;Kang, Sae Ryung;Min, Jung Joon
    • Smart Media Journal
    • /
    • v.10 no.2
    • /
    • pp.22-29
    • /
    • 2021
  • In the past decade, deep learning has been applied to various medical image analysis tasks. Skeletal bone age estimation is clinically important as it can help prevent age-related illness and pave the way for new anti-aging therapies. Recent research has applied deep learning techniques to the task of bone age assessment and achieved positive results. In this paper, we propose a bone age prediction method using a deep convolutional neural network. Specifically, we first train a classification model that automatically localizes the most discriminative region of an image and crops it from the original image. The regions of interest are then used as input for a regression model to estimate the age of the patient. The experiments are conducted on a whole-body scintigraphy dataset that was collected by Chonnam National University Hwasun Hospital. The experimental results illustrate the potential of our proposed method, which has a mean absolute error of 3.35 years. Our proposed framework can be used as a robust supporting tool for clinicians to prevent age-related diseases.

Improving the Cyber Security over Banking Sector by Detecting the Malicious Attacks Using the Wrapper Stepwise Resnet Classifier

  • Damodharan Kuttiyappan;Rajasekar, V
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1657-1673
    • /
    • 2023
  • With the advancement of information technology, criminals employ multiple cyberspaces to promote cybercrime. To combat cybercrime and cyber dangers, banks and financial institutions use artificial intelligence (AI). AI technologies assist the banking sector to develop and grow in many ways. Transparency and explanation of AI's ability are required to preserve trust. Deep learning protects client behavior and interest data. Deep learning techniques may anticipate cyber-attack behavior, allowing for secure banking transactions. This proposed approach is based on a user-centric design that safeguards people's private data over banking. Here, initially, the attack data can be generated over banking transactions. Routing is done for the configuration of the nodes. Then, the obtained data can be preprocessed for removing the errors. Followed by hierarchical network feature extraction can be used to identify the abnormal features related to the attack. Finally, the user data can be protected and the malicious attack in the transmission route can be identified by using the Wrapper stepwise ResNet classifier. The proposed work outperforms other techniques in terms of attack detection and accuracy, and the findings are depicted in the graphical format by employing the Python tool.

A Comprehensive Literature Study on Precision Agriculture: Tools and Techniques

  • Bh., Prashanthi;A.V. Praveen, Krishna;Ch. Mallikarjuna, Rao
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.229-238
    • /
    • 2022
  • Due to digitization, data has become a tsunami in almost every data-driven business sector. The information wave has been greatly boosted by man-to-machine (M2M) digital data management. An explosion in the use of ICT for farm management has pushed technical solutions into rural areas and benefited farmers and customers alike. This study discusses the benefits and possible pitfalls of using information and communication technology (ICT) in conventional farming. Information technology (IT), the Internet of Things (IoT), and robotics are discussed, along with the roles of Machine learning (ML), Artificial intelligence (AI), and sensors in farming. Drones are also being studied for crop surveillance and yield optimization management. Global and state-of-the-art Internet of Things (IoT) agricultural platforms are emphasized when relevant. This article analyse the most current publications pertaining to precision agriculture using ML and AI techniques. This study further details about current and future developments in AI and identify existing and prospective research concerns in AI for agriculture based on this thorough extensive literature evaluation.

Artificial Intelligence (AI)-based Deep Excavation Designed Program

  • Yoo, Chungsik;Aizaz, Haider Syed;Abbas, Qaisar;Yang, Jaewon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.277-292
    • /
    • 2018
  • This paper presents the development and implementation of an artificial intelligence (AI)-based deep excavation induced wall and ground displacements and wall support member forces prediction program (ANN-EXCAV). The program has been developed in a C# environment by using the well-known AI technique artificial neural network (ANN). Program used ANN to predict the induced displacement, groundwater drawdown and wall and support member forces parameters for deep excavation project and run the stability check by comparing predict values to the calculated allowable values. Generalised ANNs were trained to predict the said parameters through databases generated by numerical analysis for cases that represented real field conditions. A practical example to run the ANN-EXCAV is illustrated in this paper. Results indicate that the program efficiently performed the calculations with a considerable accuracy, so it can be handy and robust tool for preliminary design of wall and support members for deep excavation project.

Human Factor & Artificial Intelligence: For future software security to be invincible, a confronting comprehensive survey

  • Al-Amri, Bayan O;Alsuwat, Hatim;Alsuwat, Emad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.245-251
    • /
    • 2021
  • This work aims to focus on the current features and characteristics of Human Element and Artificial intelligence (AI), ask some questions about future information security, and whether we can avoid human errors by improving machine learning and AI or invest in human knowledge more and work them both together in the best way possible? This work represents several related research results on human behavior towards information security, specified with elements and factors like knowledge and attitude, and how much are they invested for ISA (information security awareness), then presenting some of the latest studies on AI and their contributions to further improvements, making the field more securely advanced, we aim to open a new type of thinking in the cybersecurity field and we wish our suggestions of utilizing each point of strengths in both human attributions in software security and the existence of a well-built AI are going to make better future software security.

A Network Packet Analysis Method to Discover Malicious Activities

  • Kwon, Taewoong;Myung, Joonwoo;Lee, Jun;Kim, Kyu-il;Song, Jungsuk
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.143-153
    • /
    • 2022
  • With the development of networks and the increase in the number of network devices, the number of cyber attacks targeting them is also increasing. Since these cyber-attacks aim to steal important information and destroy systems, it is necessary to minimize social and economic damage through early detection and rapid response. Many studies using machine learning (ML) and artificial intelligence (AI) have been conducted, among which payload learning is one of the most intuitive and effective methods to detect malicious behavior. In this study, we propose a preprocessing method to maximize the performance of the model when learning the payload in term units. The proposed method constructs a high-quality learning data set by eliminating unnecessary noise (stopwords) and preserving important features in consideration of the machine language and natural language characteristics of the packet payload. Our method consists of three steps: Preserving significant special characters, Generating a stopword list, and Class label refinement. By processing packets of various and complex structures based on these three processes, it is possible to make high-quality training data that can be helpful to build high-performance ML/AI models for security monitoring. We prove the effectiveness of the proposed method by comparing the performance of the AI model to which the proposed method is applied and not. Forthermore, by evaluating the performance of the AI model applied proposed method in the real-world Security Operating Center (SOC) environment with live network traffic, we demonstrate the applicability of the our method to the real environment.

Genetic Control of Learning and Prediction: Application to Modeling of Plasma Etch Process Data (학습과 예측의 유전 제어: 플라즈마 식각공정 데이터 모델링에의 응용)

  • Uh, Hyung-Soo;Gwak, Kwan-Woong;Kim, Byung-Whan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.315-319
    • /
    • 2007
  • A technique to model plasma processes was presented. This was accomplished by combining the backpropagation neural network (BPNN) and genetic algorithm (GA). Particularly, the GA was used to optimize five training factor effects by balancing the training and test errors. The technique was evaluated with the plasma etch data, characterized by a face-centered Box Wilson experiment. The etch outputs modeled include Al etch rate, AI selectivity, DC bias, and silica profile angle. Scanning electron microscope was used to quantify the etch outputs. For comparison, the etch outputs were modeled in a conventional fashion. GABPNN models demonstrated a considerable improvement of more than 25% for all etch outputs only but he DC bias. About 40% improvements were even achieved for the profile angle and AI etch rate. The improvements demonstrate that the presented technique is effective to improving BPNN prediction performance.

Blockchain Based Data-Preserving AI Learning Environment Model for Cyber Security System (AI 사이버보안 체계를 위한 블록체인 기반의 Data-Preserving AI 학습환경 모델)

  • Kim, Inkyung;Park, Namje
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.12
    • /
    • pp.125-134
    • /
    • 2019
  • As the limitations of the passive recognition domain, which is not guaranteed transparency of the operation process, AI technology has a vulnerability that depends on the data. Human error is inherent because raw data for artificial intelligence learning must be processed and inspected manually to secure data quality for the advancement of AI learning. In this study, we examine the necessity of learning data management before machine learning by analyzing inaccurate cases of AI learning data and cyber security attack method through the approach from cyber security perspective. In order to verify the learning data integrity, this paper presents the direction of data-preserving artificial intelligence system, a blockchain-based learning data environment model. The proposed method is expected to prevent the threats such as cyber attack and data corruption in providing and using data in the open network for data processing and raw data collection.

Urinary Stones Segmentation Model and AI Web Application Development in Abdominal CT Images Through Machine Learning (기계학습을 통한 복부 CT영상에서 요로결석 분할 모델 및 AI 웹 애플리케이션 개발)

  • Lee, Chung-Sub;Lim, Dong-Wook;Noh, Si-Hyeong;Kim, Tae-Hoon;Park, Sung-Bin;Yoon, Kwon-Ha;Jeong, Chang-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.11
    • /
    • pp.305-310
    • /
    • 2021
  • Artificial intelligence technology in the medical field initially focused on analysis and algorithm development, but it is gradually changing to web application development for service as a product. This paper describes a Urinary Stone segmentation model in abdominal CT images and an artificial intelligence web application based on it. To implement this, a model was developed using U-Net, a fully-convolutional network-based model of the end-to-end method proposed for the purpose of image segmentation in the medical imaging field. And for web service development, it was developed based on AWS cloud using a Python-based micro web framework called Flask. Finally, the result predicted by the urolithiasis segmentation model by model serving is shown as the result of performing the AI web application service. We expect that our proposed AI web application service will be utilized for screening test.

A technique for predicting the cutting points of fish for the target weight using AI machine vision

  • Jang, Yong-hun;Lee, Myung-sub
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.4
    • /
    • pp.27-36
    • /
    • 2022
  • In this paper, to improve the conditions of the fish processing site, we propose a method to predict the cutting point of fish according to the target weight using AI machine vision. The proposed method performs image-based preprocessing by first photographing the top and front views of the input fish. Then, RANSAC(RANdom SAmple Consensus) is used to extract the fish contour line, and then 3D external information of the fish is obtained using 3D modeling. Next, machine learning is performed on the extracted three-dimensional feature information and measured weight information to generate a neural network model. Subsequently, the fish is cut at the cutting point predicted by the proposed technique, and then the weight of the cut piece is measured. We compared the measured weight with the target weight and evaluated the performance using evaluation methods such as MAE(Mean Absolute Error) and MRE(Mean Relative Error). The obtained results indicate that an average error rate of less than 3% was achieved in comparison to the target weight. The proposed technique is expected to contribute greatly to the development of the fishery industry in the future by being linked to the automation system.