• 제목/요약/키워드: Network based robot

검색결과 569건 처리시간 0.034초

군집 로봇의 임무 검증 지원을 위한 디지털 트윈 기반 통신 최적화 기법 (Digital Twin-Based Communication Optimization Method for Mission Validation of Swarm Robot)

  • 김관혁;김한진;권준형;하범수;허석행;구지훈;손호정;김원태
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권1호
    • /
    • pp.9-16
    • /
    • 2023
  • 로봇은 군사 분야로까지 활용 범위를 넓히며 다가올 미래전에서 감시경계, 적군 탐지 등 중요한 임무를 맡게 될 것으로 전망된다. 군집 로봇은 다수라는 장점으로 단일 로봇이 수행하기 어렵거나 오랜 시간이 소요된 임무를 보다 효율적으로 수행할 수 있다. 상호 간 인지 및 협업이 필수인 군집 로봇은 방대한 데이터를 주고 받으며, 이로 인해 SW의 검증이 점점 더 어려워지고 있다. 임무 검증의 신뢰성을 높이기 위해 사용하는 Hardware-in-the-loop simulation은 복잡한 군집 로봇의 SW 검증을 가능하게 하나, HILS 장치와 시뮬레이터 간 주고 받는 검증 데이터의 양이 검증 대상 시스템 수에 따라 기하급수적으로 증가하여 통신 과부하가 발생할 수 있다. 본 논문에서는 군집 로봇의 임무 검증에서 발생하는 통신 과부하 문제를 해소하기 위해 디지털 트윈 기반의 통신 최적화 기법을 제안한다. 제안하는 Digital Twin based Multi HILS Framework 하에서 Network DT은 Network Controller 알고리즘을 통해 임무 시나리오에 따라 각 로봇에게 네트워크 자원을 효율적으로 할당할 수 있으며, 군집에 참여하는 개별 로봇들이 요구하는 Sensor Generation Rate를 모두 만족시킬 수 있음을 확인하였다. 또한 데이터 전송에 대한 실험 결과 패킷 손실 비율을 기존 15.7%에서 약 0.2%로 감소시킬 수 있었다.

다수 로봇간 공간궤적 동기화를 위한 모션계획 알고리즘 (A Motion Planning Algorithm for Synchronizing Spatial Trajectories of Multi-Robots)

  • 정영도;김성락;이충동;임현규
    • 제어로봇시스템학회논문지
    • /
    • 제10권12호
    • /
    • pp.1233-1240
    • /
    • 2004
  • Recently the need for cooperative control among robots is increasing in a variety of industrial robot applications. Such a control framework enhances the efficiency of the real robotic assembly environment along with extending the robot application. In this paper, an ethernet-based cooperative control framework was proposed. The cooperative control of robots can multiply the handling capacity of robot system, and make it possible to implement jigless cooperation, due to realization of trajectory-synchronized movement between a master robot and slave robots. Coordinate transformation was used to relate among robots in a common coordinate. An optimized ethernet protocol of HiNet was developed to maximize the speed of communication and to minimize the error of synchronous movement. The proposed algorithm and optimization of network protocol was tested in several class of robots.

비전 시스템을 이용한 이동로봇 Self-positioning과 VRML과의 영상오버레이 (Self-Positioning of a Mobile Robot using a Vision System and Image Overlay with VRML)

  • 권방현;정길도
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.258-260
    • /
    • 2005
  • We describe a method for localizing a mobile robot in the working environment using a vision system and VRML. The robot identifies landmarks in the environment and carries out the self-positioning. The image-processing and neural network pattern matching technique are employed to recognize landmarks placed in a robot working environment. The robot self-positioning using vision system is based on the well-known localization algorithm. After self-positioning, 2D scene is overlaid with VRML scene. This paper describes how to realize the self-positioning and shows the result of overlaying between 2D scene and VRML scene. In addition we describe the advantage expected from overlapping both scenes.

  • PDF

로봇의 운동특성을 고려한 새로운 시각구동 방법 (A novel visual servoing techniques considering robot dynamics)

  • 이준수;서일홍;김태원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.410-414
    • /
    • 1996
  • A visual servoing algorithm is proposed for a robot with a camera in hand. Specifically, novel image features are suggested by employing a viewing model of perspective projection to estimate relative pitching and yawing angles between the object and the camera. To compensate dynamic characteristics of the robot, desired feature trajectories for the learning of visually guided line-of-sight robot motion are obtained by measuring features by the camera in hand not in the entire workspace, but on a single linear path along which the robot moves under the control of a, commercially provided function of linear motion. And then, control actions of the camera are approximately found by fuzzy-neural networks to follow such desired feature trajectories. To show the validity of proposed algorithm, some experimental results are illustrated, where a four axis SCARA robot with a B/W CCD camera is used.

  • PDF

Fara robot에서의 RCCL(Robot Control C Library) 구현 (Implementation of RCCL on fara robot)

  • 선경일;김병국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.714-717
    • /
    • 1992
  • An intelligent robot control system is developed, which is based on extensible hardwares and softwares. The system could be used to test advanced and complex real time application programs to avoid constraints on present robot control system in executing a complex or precise algorithms, due to the limitation of hardware and software. In this paper we used the RCCL(Robot Control C Library) on SUN4 as a supervisory system that plays the path planning and man-machine interface. And we used VxWORKS as a real time OS on a VME bus CPU equiped with some interface boards. Two systems were connected through the Ethernet network. We used the 4 axis manipulator, FARA, developed by Samsung Electronics Co.

  • PDF

프레즌스 및 openAPI를 활용한 URC서비스 플랫폼 (URC Service Platform based on presence and openAPI)

  • 배정일;김동훈;이현주;연승호
    • 로봇학회논문지
    • /
    • 제3권1호
    • /
    • pp.68-72
    • /
    • 2008
  • Combining robot and network gives us many advantages like lightweight hardware specification of robot, a various robot service, simple upgrade of robot, easy management and so on. Among these advantages, Presence service and openAPI are most important. Presence is simple but powerful service. It makes user to know the status information of robot and enables user to control robot from a remote place. OpenAPI which is also a feature of WEB2.0 enables $3^{rd}$ parties to make a various mashup service easily and rapidly. Finally presence and openAPI can help URC service to be ubiquitous and successful.

  • PDF

이족 보형로봇 개발과 그네 운동 (Development of Biped Walking Robot and Its Swing Motion)

  • 박성훈;김지홍;이수영;정길도;성영휘
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2411-2413
    • /
    • 2003
  • A new small humanoid robot system is developed in this paper. The humanoid robot has total 20 DOFs : 6 DOFs in each legs, 3 DOFs in each arms, and 2 DOFs in head, 34cms in height, and 2kgs in weight. The robot has the following characteristics: (1) PDA as host controller (2) network-based joint controller (3) wireless camera attached in robot's head (4) mechanism design by CATIA and high speed laser prototyping (5) graphic MMI(Man-Machine Interface) utilizing the CATIA data. By using ADXL inclination sensor, we implement the rope swing with the robot leg motion as well as walking.

  • PDF

RBF 신경망을 이용한 로봇 매니퓰레이터의 분산제어 (Decentralized Control of Robot Manipulator Using the RBF Neural Network)

  • 원성운;김영태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.657-660
    • /
    • 2003
  • Control of multi-link robot arms is a very difficult problem because of the highly nonlinear dynamics. Decentralized control scheme is developed for control of robot manipulators based on RBF(Radial Basis Function) Neural Networks. RBF Neural Networks is used to approximate the coupling forces among the joints, coriolis force, centrifugal force, gravitational force, and frictional force. The compensation controller is also proposed to estimate the bound of approximation error so that the chattering effect of the control effort can be reduced. The proposed scheme does not require an accurate manipulator dynamic, and it is proved that closed-loop system is asymptotic stable despite the gross robot parameter variations. Numerical simulations for two-link robot manipulator are included to show the effectiveness of controller.

  • PDF

Self-Learning Control of Cooperative Motion for Humanoid Robots

  • Hwang, Yoon-Kwon;Choi, Kook-Jin;Hong, Dae-Sun
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권6호
    • /
    • pp.725-735
    • /
    • 2006
  • This paper deals with the problem of self-learning cooperative motion control for the pushing task of a humanoid robot in the sagittal plane. A model with 27 linked rigid bodies is developed to simulate the system dynamics. A simple genetic algorithm(SGA) is used to find the cooperative motion, which is to minimize the total energy consumption for the entire humanoid robot body. And the multi-layer neural network based on backpropagation(BP) is also constructed and applied to generalize parameters, which are obtained from the optimization procedure by SGA, in order to control the system.

퍼지-뉴럴 제어기법에 의한 이동형 로봇의 자율주행 제어시스템 설계 (Design of automatic cruise control system of mobile robot using fuzzy-neural control technique)

  • 한성현;김종수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1804-1807
    • /
    • 1997
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learnign architecture. It is proposed a learning controller consisting of two neural networks-fuzzy based on independent reasoning and a connecton net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF