• Title/Summary/Keyword: Network Streaming

Search Result 644, Processing Time 0.031 seconds

Adaptive Rate Control Scheme for Streaming-based Content Sharing Service

  • Lee, Sunghee;Chung, Kwangsue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.784-799
    • /
    • 2013
  • This paper presents an adaptive rate control scheme for streaming-based content sharing service. This scheme delivers multimedia contents from a user device to another device or seamlessly redirects streaming service across heterogeneous user devices. In the proposed scheme, a streaming server adjusts video quality level according to the network and client status. Our scheme is different from other rate control schemes, because the video quality at the server is decided not only based on the available bandwidth, but also based on the device characteristics and bandwidth requirement at the access network. We also propose a bandwidth estimation method to achieve more equitable bandwidth allocations among streaming flows competing for the same narrow link with different Round Trip Times (RTTs). Through the simulation, we prove that our scheme improves the network stability and the quality of streaming service by appropriately adjusting the quality of the video stream. The simulation results also demonstrate the ability of the proposed scheme in ensuring RTT-fairness while remaining throughput efficient.

A Delay-guaranteed Overlay Network for P2P Streaming Service (P2P 스트리밍 서비스를 위한 지연시간 보장 오버레이 네트워크)

  • Park, Seung-Chul
    • Journal of Information Technology Services
    • /
    • v.9 no.3
    • /
    • pp.83-93
    • /
    • 2010
  • P2P streaming technology has advantages of scalability and availability comparing to the popular IP multicast. This paper proposes an approach to apply the P2P streaming technology to the delay-sensitive multimedia multicast applications. In order for the P2P streaming to be applied to the delay-sensitive applications, prior construction of delay-guaranteed overlay network is necessarily required. Moreover, the delay-guaranteed overlay network should be able to be kept even when the hand-overs occur owing to the departures of the intermediate P2P peers. This paper proposes a delay-guaranteed overlay network construction method by using the bandwidth and end-to-end delay based admission control and the backup peer based hand-over control mechanism.

A Study on the Performance Enhancements of Video Streaming Service in MPLS Network

  • Kwak Kyoung Hwan;Park In Kap;Kim Chung Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.549-551
    • /
    • 2004
  • This paper used OPNET to simulate video streaming service a test IP network and MPLS network with the traffic shaping that have with CQ_ LLQ algorithm, LSP of fixed bandwidth, policy of limitation users and measures parameters such as delay, throughput, packet loss. To verify the performance of video streaming service in IP network and MPLS network, two scenario that have same topology and traffic source. One is the simulation for best-effort service in pure IP network. The other is the simulation for QoS-enabled service in MPLS Network. Based on simulation result, the MPLS network with CQ_ LLQ algorithm and fixed LSP show advantage of the video streaming service QoS, specially delay and packet loss

  • PDF

Design and Implementation of Autonomic Multimedia Transcoding System for Network Adaptive QoS (네트워크 적응적 QoS를 위한 오토노믹 멀티미디어 트랜스코딩 시스템의 설계 및 구현)

  • Seo, Donh-Mahn;Jung, In-Bum
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.131-139
    • /
    • 2007
  • The recent advance in wireless network technologies has enabled the streaming media service on the mobile devices such as PDAs and cellular phones. Since the wireless network has low bandwidth channels and mobile devices are actually composed of limited hardware specifications, the transcoding technology is needed to adapt streaming media to given mobile devices. Futhermore owing to the diversity of bandwidth in the wireless network by reason of mobile users' movements and environments, it is difficult to provide stable QoS. In this paper, the autonomic multimedia transcoding system is proposed in order for users to provide network adaptive QoS. Our proposed system is based on the estimation of available bandwidth in wireless network for seamless multimedia streaming service. The proposed system is designed and implemented for various mobile clients. In experiments, we evaluate its seamless multimedia streaming and the adaptation transcoding bit rate according to the changes of bandwidth in wireless network.

  • PDF

Energy-Aware Media Streaming Service for Mobile Devices (이동단말기를 위한 에너지 인식 미디어 스트리밍 서비스)

  • Lee, Joa-Hyoung;Kim, Hark-Soo;Jung, In-Bum
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.5
    • /
    • pp.379-388
    • /
    • 2007
  • With proliferation of computer and wireless network technology, it is common to access Internet through wireless network using mobile device. Ratio of using streaming media out of many applications through Internet is increasing not only in wired network but also in wireless network. Streaming media is much bigger than other contents and requires more network bandwidth and more computing resources. However mobile devices hate relatively poor computing resource and low network bandwidth. If media streaming service is provided for mobile devices without any consideration about network bandwidth and computing power, it is hard for the client to get high qualify service. Since mobile device is supported with very limited energy from the battery, media streaming should be adjusted to varying energy state of mobile device in realtime to ensure complete playback of streaming media. In this paper, we propose DFRC to provide high qualify service to mobile client through wireless network by controlling the number of frames transmitted to client based on computing resource and energy state of mobile device.

Cost-Efficient Framework for Mobile Video Streaming using Multi-Path TCP

  • Lim, Yeon-sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1249-1265
    • /
    • 2022
  • Video streaming has become one of the most popular applications for mobile devices. The network bandwidth required for video streaming continues to exponentially increase as video quality increases and the user base grows. Multi-Path TCP (MPTCP), which allows devices to communicate simultaneously through multiple network interfaces, is one of the solutions for providing robust and reliable streaming of such high-definition video. However, mobile video streaming over MPTCP raises new concerns, e.g., power consumption and cellular data usage, since mobile device resources are constrained, and users prefer to minimize such costs. In this work, we propose a mobile video streaming framework over MPTCP (mDASH) to reduce the costs of energy and cellular data usage while preserving feasible streaming quality. Our evaluation results show that by utilizing knowledge about video behavior, mDASH can reduce energy consumption by up to around 20%, and cellular usage by 15% points, with minimal quality degradation.

Optimizing the Joint Source/Network Coding for Video Streaming over Multi-hop Wireless Networks

  • Cui, Huali;Qian, Depei;Zhang, Xingjun;You, Ilsun;Dong, Xiaoshe
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.800-818
    • /
    • 2013
  • Supporting video streaming over multi-hop wireless networks is particularly challenging due to the time-varying and error-prone characteristics of the wireless channel. In this paper, we propose a joint optimization scheme for video streaming over multi-hop wireless networks. Our coding scheme, called Joint Source/Network Coding (JSNC), combines source coding and network coding to maximize the video quality under the limited wireless resources and coding constraints. JSNC segments the streaming data into generations at the source node and exploits the intra-session coding on both the source and the intermediate nodes. The size of the generation and the level of redundancy influence the streaming performance significantly and need to be determined carefully. We formulate the problem as an optimization problem with the objective of minimizing the end-to-end distortion by jointly considering the generation size and the coding redundancy. The simulation results demonstrate that, with the appropriate generation size and coding redundancy, the JSNC scheme can achieve an optimal performance for video streaming over multi-hop wireless networks.

An MPEG-4 Compliant Interactive Multimedia Streaming Platform Using Overlay Networks

  • Kim, Hyun-Cheol;Patrikakis, Charalampos Z.;Minogiannis, Nikos;Karamolegkos, Pantelis N.;Lambiris, Alex;Kim, Kyu-Heon
    • ETRI Journal
    • /
    • v.28 no.4
    • /
    • pp.411-424
    • /
    • 2006
  • This paper presents a multimedia streaming platform for efficiently transmitting MPEG-4 content over IP networks. The platform includes an MPEG-4 compliant streaming server and client, supporting object-based representation of multimedia scenes, interactivity, and advanced encoding profiles defined by the ISO standard. For scalability purposes, we employ an application-layer multicast scheme for media transmission using overlay networks. The overlay network, governed by the central entity of the network distribution manager, is dynamically deployed according to a set of pre-defined criteria. The overlay network supports both broadcast delivery and video-on-demand content. The multimedia streaming platform is standards-compliant and utilizes widespread multimedia protocols such as MPEG-4, real-time transport protocol, real-time transport control protocol, and real-time streaming protocol. The design of the overlay network was architected with the goal of transparency to both the streaming server and the client. As a result, many commercial implementations that use industry-standard protocols can be plugged into the architecture relatively painlessly and can enjoy the benefits of the platform.

  • PDF

A Mobile-aware Adaptive Rate Control Scheme for Improving the User Perceived QoS of Multimedia Streaming Services in Wireless Broadband Networks

  • Koo, Ja-Hon;Chung, Kwang-Sue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1152-1168
    • /
    • 2010
  • Recently, due to the prevalence of various mobile devices and wireless broadband networks, there has been a significant increase in interest and demand for multimedia streaming services such as the mobile IPTV. In such a wireless broadband network, transmitting a continuous stream of multimedia data is difficult to achieve due to mobile stations (MSs) movement. Providing Quality of Service (QoS) for multimedia video streaming applications requires the server and/or client to be network-aware and adaptive. Therefore, in order to deploy a mobile IPTV service in wireless broadband networks, offering users efficient wireless resource utilization and seamlessly offering user perceived QoS are important issues. In this paper, we propose a new adaptive streaming scheme, called MARC (Mobile-aware Adaptive Rate Control), which adjusts the quality of bit-stream and transmission rate of video streaming based on the wireless channel status and network status. The proposed scheme can control the rate of multimedia streaming to be suitable for the wireless channel status by using awareness information of the wireless channel quality and the mobile station location. The proposed scheme can provide a seamless multimedia playback service in wireless broadband networks in addition to improving the QoS of multimedia streaming services. The proposed MARC scheme alleviates the discontinuity of multimedia playback and allocates a suitable client buffer to the wireless broadband network. The simulation results demonstrate the effectiveness of our proposed scheme.

Real-Time Streaming Traffic Prediction Using Deep Learning Models Based on Recurrent Neural Network (순환 신경망 기반 딥러닝 모델들을 활용한 실시간 스트리밍 트래픽 예측)

  • Jinho, Kim;Donghyeok, An
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.2
    • /
    • pp.53-60
    • /
    • 2023
  • Recently, the demand and traffic volume for various multimedia contents are rapidly increasing through real-time streaming platforms. In this paper, we predict real-time streaming traffic to improve the quality of service (QoS). Statistical models have been used to predict network traffic. However, since real-time streaming traffic changes dynamically, we used recurrent neural network-based deep learning models rather than a statistical model. Therefore, after the collection and preprocessing for real-time streaming data, we exploit vanilla RNN, LSTM, GRU, Bi-LSTM, and Bi-GRU models to predict real-time streaming traffic. In evaluation, the training time and accuracy of each model are measured and compared.