• 제목/요약/키워드: Network Scale-Up

검색결과 171건 처리시간 0.034초

The Effectiveness of a Training Program based on Digital Stories to Develop Writing Skills for Students with Learning Difficulties

  • ALMAGHRABI, Emtenan Saud;Alqudah, Derar Mohammed
    • International Journal of Computer Science & Network Security
    • /
    • 제22권11호
    • /
    • pp.25-32
    • /
    • 2022
  • The current research aims to identify the effectiveness of a training program based on digital stories to develop writing skills for students with learning difficulties. The research sample consisted of (12) students with learning difficulties in the fifth and sixth grades, who were chosen intentionally. The results showed the effectiveness of the program and the maintenance of this improvement over time as results showed that there were statistically significant differences at the level (α = 0.05) between the two measurements, before and after, in favor of the post-measurement. The results also showed that there were no statistically significant differences at the level (α = 0.05) between the post and follow-up measurements on the writing skills scale. This indicates the long-term impact of the program. The researchers recommend the need to expand educational programs' adoption of digital stories to develop the skills of students with learning difficulties.

Scaling Up Face Masks Classification Using a Deep Neural Network and Classical Method Inspired Hybrid Technique

  • Kumar, Akhil;Kalia, Arvind;Verma, Kinshuk;Sharma, Akashdeep;Kaushal, Manisha;Kalia, Aayushi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권11호
    • /
    • pp.3658-3679
    • /
    • 2022
  • Classification of persons wearing and not wearing face masks in images has emerged as a new computer vision problem during the COVID-19 pandemic. In order to address this problem and scale up the research in this domain, in this paper a hybrid technique by employing ResNet-101 and multi-layer perceptron (MLP) classifier has been proposed. The proposed technique is tested and validated on a self-created face masks classification dataset and a standard dataset. On self-created dataset, the proposed technique achieved a classification accuracy of 97.3%. To embrace the proposed technique, six other state-of-the-art CNN feature extractors with six other classical machine learning classifiers have been tested and compared with the proposed technique. The proposed technique achieved better classification accuracy and 1-6% higher precision, recall, and F1 score as compared to other tested deep feature extractors and machine learning classifiers.

프로배구 선수의 사회연결망 구조와 자원교환 (Network Structure of Professional Volleyball Players and Resource Exchange)

  • 이세호
    • 한국콘텐츠학회논문지
    • /
    • 제12권6호
    • /
    • pp.438-447
    • /
    • 2012
  • 이 연구는 프로배구 선수의 사회연결망 구조를 분석하고, 연결망 주요 변수와 자원교환의 관계를 규명하였다. 이 연구에서는 유목적 표집법을 이용하여 2011년 한국 프로배구팀 중 남자 5개팀과 여자 5개 팀의 선수들을 연구대상으로 선정하였으며, 각 140명을 표집하였다. 그러나 최종 분석에 사용된 데이터는 127명이다. 조사방법은 NGQ(Name Generator Question)를 이용한 면접법을 통하여 실시하였으며, 자료처리방법은 NetMiner 3.0을 활용하여 사회연결망 분석을 실시하였다. 결론은 다음과 같다. 첫째, 프로배구 선수의 사회연결망은 멱함수 법칙을 따르는 척도없는 네트워크였다. 즉, 중앙에 놓여 있는 소수의 선수(노드)가 변방이나 주변에 위치한 다른 선수와의 사회적 관계를 끌어 들이는 부익부 빈익빈 형태를 보였다. 둘째, 프로배구 선수의 사회연결망 구조는 자원교환과 유의한 관련성을 지니고 있다. 즉, 내향 활동성이 높을수록 모든 자원교환에서, 외향 활동성이 높을수록 사교적 자원교환에서, 매개중앙성이 높을수록 모든 자원교환에서, 내향 파워가 높을수록 사교적 자원교환에서, 그리고 외향 파워가 높을수록 모든 자원교환에서 유리하였다. 프로배구 선수의 사회연결망에서의 중앙과 변방의 자리매김 위치는 선수들간의 자원교환에서 유리함을 알 수 있다.

이스트 프로테옴에 대한 단백질-단백질 네트워크의 생물학적 및 물리학적 정보인식 : 라플라스 행렬에 대한 고유치와 섭동분석 (Identifying the biological and physical essence of protein-protein network for yeast proteome : Eigenvalue and perturbation analysis of Laplacian matrix)

  • Chang, Ik-Soo;Cheon, Moo-Kyung;Moon, Eun-Joung;Kim, Choong-Rak
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2004년도 The 3rd Annual Conference for The Korean Society for Bioinformatics Association of Asian Societies for Bioinformatics 2004 Symposium
    • /
    • pp.265-271
    • /
    • 2004
  • The interaction network of protein -protein plays an important role to understand the various biological functions of cells. Currently, the high -throughput experimental techniques (two -dimensional gel electrophoresis, mass spectroscopy, yeast two -hybrid assay) provide us with the vast amount of data for protein-protein interaction at the proteome scale. In order to recognize the role of each protein in their network, the efficient bioinformatical and computational analysis methods are required. We propose a systematic and mathematical method which can analyze the protein -protein interaction network rigorously and enable us to capture the biological and physical essence of a topological character and stability of protein -protein network, and sensitivity of each protein along the biological pathway of their network. We set up a Laplacian matrix of spectral graph theory based on the protein-protein network of yeast proteome, and perform an eigenvalue analysis and apply a perturbation method on a Laplacian matrix, which result in recognizing the center of protein cluster, the identity of hub proteins around it and their relative sensitivities. Identifying the topology of protein -protein network via a Laplacian matrix, we can recognize the important relation between the biological pathway of yeast proteome and the formalism of master equation. The results of our systematic and mathematical analysis agree well with the experimental findings of yeast proteome. The biological function and meaning of each protein cluster can be explained easily. Our rigorous analysis method is robust for understanding various kinds of networks whether they are biological, social, economical...etc

  • PDF

이중 링 CC-NUMA 시스템에서 링 구조 변화에 따른 시스템 성능 분석 (Analysis of System Performance of Change the Ring Architecture on Dual Ring CC-NUMA System)

  • 윤주범;장성태;전주식
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제29권2호
    • /
    • pp.105-115
    • /
    • 2002
  • NUMa 구조는 원격 메모리에 대한 접근이 불가피한 구조적 특성 때문에 상호 연결망이 시스템 성능을 좌우하는 큰 변수가 된다. 기존에 대중적으로 사용되던 버스는 물리적 확장성 및 대역폭에서 대규모 시스템을 구성하는데 한계를 보인다. 이를 대체하는 고속의 지점간 링크를 사용한 이중 링구조는 버스가 가지는 확장성 및 대역폭의 한계라는 단점을 개선하였으나, 많은 노드가 연결되는 경우에는 응답 지연시간이 증가하는 문제점을 가지고 있다. 본 논문에서는 스누핑 프로토콜이 적용된 이중 일 구조에서 노드개수 증가에 따른 응답지연시간 증가의 문제점을 보안하기 위해 코달 링 구조로의변화를 제안하고 이 구조에 효과적인 링크 제어기를 설계한다. 또한 확률 구동 시뮬레이터를통해 본 논문을 통해 제시한 코달 링 구조가 시스템의 성능 및 응답시간에 미치는 영향을 알아본다.

Analysis of a Large-scale Protein Structural Interactome: Ageing Protein structures and the most important protein domain

  • Bolser, Dan;Dafas, Panos;Harrington, Richard;Schroeder, Michael;Park, Jong
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2003년도 제2차 연례학술대회 발표논문집
    • /
    • pp.26-51
    • /
    • 2003
  • Large scale protein interaction maps provide a new, global perspective with which to analyse protein function. PSIMAP, the Protein Structural Interactome Map, is a database of all the structurally observed interactions between superfamilies of protein domains with known three-dimensional structure in thePDB. PSIMAP incorporates both functional and evolutionary information into a single network. It makes it possible to age protein domains in terms of taxonomic diversity, interaction and function. One consequence of it is to predict the most important protein domain structure in evolution. We present a global analysis of PSIMAP using several distinct network measures relating to centrality, interactivity, fault-tolerance, and taxonomic diversity. We found the following results: ${\bullet}$ Centrality: we show that the center and barycenter of PSIMAP do not coincide, and that the superfamilies forming the barycenter relate to very general functions, while those constituting the center relate to enzymatic activity. ${\bullet}$ Interactivity: we identify the P-loop and immunoglobulin superfamilies as the most highly interactive. We successfully use connectivity and cluster index, which characterise the connectivity of a superfamily's neighbourhood, to discover superfamilies of complex I and II. This is particularly significant as the structure of complex I is not yet solved. ${\bullet}$ Taxonomic diversity: we found that highly interactive superfamilies are in general taxonomically very diverse and are thus amongst the oldest. This led to the prediction of the oldest and most important protein domain in evolution of lift. ${\bullet}$ Fault-tolerance: we found that the network is very robust as for the majority of superfamilies removal from the network will not break up the network. Overall, we can single out the P-loop containing nucleotide triphosphate hydrolases superfamily as it is the most highly connected and has the highest taxonomic diversity. In addition, this superfamily has the highest interaction rank, is the barycenter of the network (it has the shortest average path to every other superfamily in the network), and is an articulation vertex, whose removal will disconnect the network. More generally, we conclude that the graph-theoretic and taxonomic analysis of PSIMAP is an important step towards the understanding of protein function and could be an important tool for tracing the evolution of life at the molecular level.

  • PDF

대용량 스트리밍 센서데이터 환경에서 RDFS 규칙기반 병렬추론 기법 (RDFS Rule based Parallel Reasoning Scheme for Large-Scale Streaming Sensor Data)

  • 권순현;박영택
    • 정보과학회 논문지
    • /
    • 제41권9호
    • /
    • pp.686-698
    • /
    • 2014
  • 최근 스마트폰의 폭발적인 보급, IoT와 클라우드 컴퓨팅 기술의 고도화, 그리고 IoT 디바이스의 보편화로 대용량 스트리밍 센싱데이터가 출현하였다. 또한 이를 기반으로 데이터의 공유와 매쉬업 통해 새로운 데이터의 가치를 창출하기 위한 요구사항의 증대로 대용량 스트리밍 센싱데이터 환경에서 시맨틱웹 기술과의 접목에 관한 연구가 활발히 진행되고 있다. 하지만 데이터의 대용량성 스트리밍성으로 인해 새로운 지식을 도출하기 위한 지식 추론분야에서 많은 이슈들에 직면하고 있다. 이러한 배경하에, 본 논문에서는 IoT 환경에서 발생하는 대용량 스트리밍 센싱데이터를 시맨틱웹 기술로 처리하여 서비스하기 위해 RDFS 규칙기반 병렬추론 기법을 제시한다. 제안된 기법에서는 기존의 규칙추론 알고리즘인 Rete 알고리즘을 하둡프레임워크 맵리듀스를 통해 병렬로 수행하고, 공용 스토리지로서 하둡 데이터베이스인 HBase를 사용하여 데이터를 공유한다. 이를 위한 시스템을 구현하고, 대용량 스트리밍 센싱데이터인 기상청 AWS 관측데이터를 이용하여 제시된 기법에 대한 성능평가를 진행하고, 이를 입증한다.

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF

Segmentation of Mammography Breast Images using Automatic Segmen Adversarial Network with Unet Neural Networks

  • Suriya Priyadharsini.M;J.G.R Sathiaseelan
    • International Journal of Computer Science & Network Security
    • /
    • 제23권12호
    • /
    • pp.151-160
    • /
    • 2023
  • Breast cancer is the most dangerous and deadly form of cancer. Initial detection of breast cancer can significantly improve treatment effectiveness. The second most common cancer among Indian women in rural areas. Early detection of symptoms and signs is the most important technique to effectively treat breast cancer, as it enhances the odds of receiving an earlier, more specialist care. As a result, it has the possible to significantly improve survival odds by delaying or entirely eliminating cancer. Mammography is a high-resolution radiography technique that is an important factor in avoiding and diagnosing cancer at an early stage. Automatic segmentation of the breast part using Mammography pictures can help reduce the area available for cancer search while also saving time and effort compared to manual segmentation. Autoencoder-like convolutional and deconvolutional neural networks (CN-DCNN) were utilised in previous studies to automatically segment the breast area in Mammography pictures. We present Automatic SegmenAN, a unique end-to-end adversarial neural network for the job of medical image segmentation, in this paper. Because image segmentation necessitates extensive, pixel-level labelling, a standard GAN's discriminator's single scalar real/fake output may be inefficient in providing steady and appropriate gradient feedback to the networks. Instead of utilising a fully convolutional neural network as the segmentor, we suggested a new adversarial critic network with a multi-scale L1 loss function to force the critic and segmentor to learn both global and local attributes that collect long- and short-range spatial relations among pixels. We demonstrate that an Automatic SegmenAN perspective is more up to date and reliable for segmentation tasks than the state-of-the-art U-net segmentation technique.

Wake-Up Radio를 활용한 지역화 TSCH 슬롯프레임 기반 항공 데이터 수집 연구 (Regionalized TSCH Slotframe-Based Aerial Data Collection Using Wake-Up Radio)

  • 권정혁;최효현;김의직
    • 사물인터넷융복합논문지
    • /
    • 제8권2호
    • /
    • pp.1-6
    • /
    • 2022
  • 본 논문은 Wake-up radio를 활용한 지역화 Time Slotted Channel Hopping (TSCH) 슬롯프레임 기반 항공 데이터 수집 기법을 제안한다. 제안하는 기법은 무인항공기가 대규모 서비스 영역 내 배치된 센서 기기들의 데이터를 수집할 때 소요되는 지연 시간 및 소모 에너지를 최소화하는 것을 목표로 한다. 이를 위해, 제안 기법은 서비스 영역을 다수의 지역으로 분할하고, 각 지역 내 센서 기기들이 요구하는 셀의 수에 따라 지역별로 TSCH 슬롯프레임의 길이를 결정한다. 이후, 각 지역 내 센서 기기들의 ID를 활용하여 TSCH 슬롯프레임 내 데이터 전송 전용 셀을 할당한다. 에너지 효율적인 데이터 수집을 위해, 센서 기기는 Wake-up radio를 활용한다. 구체적으로, 센서 기기는 Wake-up radio를 활용하여 비콘 수신 및 데이터 전송을 위해 할당된 셀에서만 네트워크 인터페이스를 활성화한다. 시뮬레이션 결과는 제안 기법이 기존 기법 대비 지연 시간 및 에너지 소모 측면에서 더 우수한 성능을 가지는 것을 보여주었다.