• Title/Summary/Keyword: Network Mining

Search Result 1,053, Processing Time 0.025 seconds

K-means Clustering for Environmental Indicator Survey Data

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.185-192
    • /
    • 2005
  • There are many data mining techniques such as association rule, decision tree, neural network analysis, clustering, genetic algorithm, bayesian network, memory-based reasoning, etc. We analyze 2003 Gyeongnam social indicator survey data using k-means clustering technique for environmental information. Clustering is the process of grouping the data into clusters so that objects within a cluster have high similarity in comparison to one another. In this paper, we used k-means clustering of several clustering techniques. The k-means clustering is classified as a partitional clustering method. We can apply k-means clustering outputs to environmental preservation and environmental improvement.

  • PDF

Robustness of Data Mining Tools under Varting Levels of Noise:Case Study in Predicting a Chaotic Process

  • Kim, Steven H.;Lee, Churl-Min;Oh, Heung-Sik
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.1
    • /
    • pp.109-141
    • /
    • 1998
  • Many processes in the industrial realm exhibit sstochastic and nonlinear behavior. Consequently, an intelligent system must be able to nonlinear production processes as well as probabilistic phenomena. In order for a knowledge based system to control a manufacturing processes as well as probabilistic phenomena. In order for a knowledge based system to control manufacturing process, an important capability is that of prediction : forecasting the future trajectory of a process as well as the consequences of the control action. This paper examines the robustness of data mining tools under varying levels of noise while predicting nonlinear processes, includinb chaotic behavior. The evaluated models include the perceptron neural network using backpropagation (BPN), the recurrent neural network (RNN) and case based reasoning (CBR). The concepts are crystallized through a case study in predicting a chaotic process in the presence of various patterns of noise.

  • PDF

Online Clustering Algorithms for Semantic-Rich Network Trajectories

  • Roh, Gook-Pil;Hwang, Seung-Won
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.4
    • /
    • pp.346-353
    • /
    • 2011
  • With the advent of ubiquitous computing, a massive amount of trajectory data has been published and shared in many websites. This type of computing also provides motivation for online mining of trajectory data, to fit user-specific preferences or context (e.g., time of the day). While many trajectory clustering algorithms have been proposed, they have typically focused on offline mining and do not consider the restrictions of the underlying road network and selection conditions representing user contexts. In clear contrast, we study an efficient clustering algorithm for Boolean + Clustering queries using a pre-materialized and summarized data structure. Our experimental results demonstrate the efficiency and effectiveness of our proposed method using real-life trajectory data.

Traffic Information Processing & Decision Making using Data Mining Technique (데이터 마이닝을 이용한 교통 정보 분석 알고리즘 개발)

  • 강성규;정희석;이종수;김병성
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.377-380
    • /
    • 2004
  • 본 논문에서는 기존의 교통 상황 검지 장비들이 가지고 있는 문제점들을 해결하기 위해 실제 통행속도 데이터의 해당 도로 속성들을 이용하여 데이터 마이닝을 통한 합리적인 오차범위 내에서의 실시간 교통 정보 예측 알고리즘을 제안한다. 본 논문에서 제안하는 알고리즘은 데이터 파이닝의 분석 기법중 하나인 신경망(Neural Network)분석을 통하여 통행 속도 예측 근사 모델을 개발하는 것이며, 기존의 교통 상황 판단 알고리즘과의 결과 비교를 통해 비용 절감 효과와 속도 정보가 없는 도로까지의 합리적인 통행 속도 예측, 그리고 Off line상에서의 시간대별 교통 정보 제공이 가능함을 보인다.

  • PDF

Optimizing of Intrusion Detection Algorithm Performance and The development of Evaluation Methodology (침입탐지 알고리즘 성능 최적화 및 평가 방법론 개발)

  • Shin, Dae Cheol;Kim, Hong Yoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.1
    • /
    • pp.125-137
    • /
    • 2012
  • As the Internet use explodes recently, the malicious attacks and hacking for a system connected to network occur frequently. For such reason, lots of intrusion detection system has been developed. Intrusion detection system has abilities to detect abnormal behavior and unknown intrusions also it can detect intrusions by using patterns studied from various penetration methods. Various algorithms are studying now such as the statistical method for detecting abnormal behavior, extracting abnormal behavior, and developing patterns that can be expected. Etc. This study using clustering of data mining and association rule analyzes detecting areas based on two models and helps design detection system which detecting abnormal behavior, unknown attack, misuse attack in a large network.

Data Standardization for the Enhanced Utilization of Public Government Data (활용성 제고를 위한 공공데이터 표준화 연구)

  • Kim, Eun Jin;Kim, Minsu;Kim, Hee-Woong
    • Knowledge Management Research
    • /
    • v.20 no.4
    • /
    • pp.23-38
    • /
    • 2019
  • The Korean government has been trying to create new economic value-added and jobs by the openness and utilization of open government data. However, most of open government data has poor utilization rate. Although open government data standardization is a major cause of those inactivation, it is not sufficient to conduct empirical research on open government data itself. Based on this trend, this paper aims to find the priority area for opening data and suggests a realistic directions of standardization of open government data. Text mining and social network analysis approaches are used to analyze open government data and standardization. This research suggests the guides to open government data managers in practical view from selection of data to standardization direction. In addition, this research has academic implications to the knowledge management systems in terms of suggesting standardization direction by using various techniques.

Data Mining mechanism using Data Cube and Neural Network in distributed environment (분산환경에서 데이터 큐브와 신경망을 이용한 데이터마이닝기법)

  • 박민기;바비제라도;이재완
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.188-191
    • /
    • 2003
  • In this paper, we proposed data generalization and data cube mechanism for efficient data mining in distribute environment. We also proposed active Self Organization Map applying traditional Self Organization Map of Neural network for searching the most Informative data created from data cube after the generalization procedure and designed the system architecture for that.

  • PDF

Political Opinion Mining from Article Comments using Deep Learning

  • Sung, Dae-Kyung;Jeong, Young-Seob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Policy polls, which investigate the degree of support that the policy has for policy implementation, play an important role in making decisions. As the number of Internet users increases, the public is actively commenting on their policy news stories. Current policy polls tend to rely heavily on phone and offline surveys. Collecting and analyzing policy articles is useful in policy surveys. In this study, we propose a method of analyzing comments using deep learning technology showing outstanding performance in various fields. In particular, we designed various models based on the recurrent neural network (RNN) which is suitable for sequential data and compared the performance with the support vector machine (SVM), which is a traditional machine learning model. For all test sets, the SVM model show an accuracy of 0.73 and the RNN model have an accuracy of 0.83.

Tracing Students Performance by Intervention of the Academic Advisor

  • Mohamed, Abdelmoneim Ali;Nafie, Faisal Mohammed
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.539-543
    • /
    • 2021
  • Data mining technique was used to track student's performance during years studding in college and determine the impact of GPA_SEC on the GPA student rates according to the current academic advising method used on student's status. The study utilized a sample of 5436 individuals were drawn from two colleges in Majmaah University, KSA during 2013-2018 period. The results showed that the student's completion status in terms of graduation, dropout, Stumbling or dismissed was classified according to the average grades of admission from secondary school GPA_SEC. The results show the effect of the current academic advising that most of students gain less grades comparing with GPA_SEC in addition that the higher GPA_SEC was the higher graduation, dropout and dismissed decreased when GPA_SEC was high.. Therefore, the study recommends tracking students academically to evaluate their results of each semester to find out the causes of the deficiencies and addressing them within the departments.

Towards a Deep Analysis of High School Students' Outcomes

  • Barila, Adina;Danubianu, Mirela;Paraschiv, Andrei Marcel
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.71-76
    • /
    • 2021
  • Education is one of the pillars of sustainable development. For this reason, the discovery of useful information in its process of adaptation to new challenges is treated with care. This paper aims to present the initiation of a process of exploring the data collected from the results obtained by Romanian students at the BBaccalaureate (the Romanian high school graduation) exam, through data mining methods, in order to try an in-depth analysis to find and remedy some of the causes that lead to unsatisfactory results. Specifically, a set of public data was collected from the website of the Ministry of Education, on which several classification methods were tested in order to find the most efficient modeling algorithm. It is the first time that this type of data is subjected to such interests.