• Title/Summary/Keyword: Network Marketing

Search Result 683, Processing Time 0.033 seconds

A Study on the Analysis of the Congestion Level of Tourist Sites and Visitors Characteristics Using SNS Data (SNS 데이터를 활용한 관광지 혼잡도 및 방문자 특성 분석에 관한 연구)

  • Lee, Sang Hoon;Kim, Su-Yeon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.5
    • /
    • pp.13-24
    • /
    • 2022
  • SNS has become a very close service to our daily life. As marketing is done through SNS, places often called hot places are created, and users are flocking to these places. However, it is often crowded with a large number of people in a short period of time, resulting in a negative experience for both visitors and service providers. In order to improve this problem, it is necessary to recognize the congestion level, but the method to determine the congestion level in a specific area at an individual level is very limited. Therefore, in this study, we tried to propose a system that can identify the congestion level information and the characteristics of visitors to a specific tourist destination by using the data on the SNS. For this purpose, posting data uploaded by users and image analysis were used, and the performance of the proposed system was verified using the Naver DataLab system. As a result of comparative verification by selecting three places by type of tourist destination, the results calculated in this study and the congestion level provided by DataLab were found to be similar. In particular, this study is meaningful in that it provides a degree of congestion based on real data of users that is not dependent on a specific company or service.

A Study of the Beauty Commerce Customer Segment Classification and Application based on Machine Learning: Focusing on Untact Service (머신러닝 기반의 뷰티 커머스 고객 세그먼트 분류 및 활용 방안: 언택트 서비스 중심으로)

  • Sang-Hyeak Yoon;Yoon-Jin Choi;So-Hyun Lee;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.22 no.4
    • /
    • pp.75-92
    • /
    • 2020
  • As population and generation structures change, more and more customers tend to avoid facing relation due to the development of information technology and spread of smart phones. This phenomenon consists with efficiency and immediacy, which are the consumption patterns of modern customers who are used to information technology, so offline network-oriented distribution companies actively try to switch their sales and services to untact patterns. Recently, untact services are boosted in various fields, but beauty products are not easy to be recommended through untact services due to many options depending on skin types and conditions. There have been many studies on recommendations and development of recommendation systems in the online beauty field, but most of them are the ones that develop recommendation algorithm using survey or social data. In other words, there were not enough studies that classify segments based on user information such as skin types and product preference. Therefore, this study classifies customer segments using machine learning technique K-prototypesalgorithm based on customer information and search log data of mobile application, which is one of untact services in the beauty field, based on which, untact marketing strategy is suggested. This study expands the scope of the previous literature by classifying customer segments using the machine learning technique. This study is practically meaningful in that it classifies customer segments by reflecting new consumption trend of untact service, and based on this, it suggests a specific plan that can be used in untact services of the beauty field.

Design of Client-Server Model For Effective Processing and Utilization of Bigdata (빅데이터의 효과적인 처리 및 활용을 위한 클라이언트-서버 모델 설계)

  • Park, Dae Seo;Kim, Hwa Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.109-122
    • /
    • 2016
  • Recently, big data analysis has developed into a field of interest to individuals and non-experts as well as companies and professionals. Accordingly, it is utilized for marketing and social problem solving by analyzing the data currently opened or collected directly. In Korea, various companies and individuals are challenging big data analysis, but it is difficult from the initial stage of analysis due to limitation of big data disclosure and collection difficulties. Nowadays, the system improvement for big data activation and big data disclosure services are variously carried out in Korea and abroad, and services for opening public data such as domestic government 3.0 (data.go.kr) are mainly implemented. In addition to the efforts made by the government, services that share data held by corporations or individuals are running, but it is difficult to find useful data because of the lack of shared data. In addition, big data traffic problems can occur because it is necessary to download and examine the entire data in order to grasp the attributes and simple information about the shared data. Therefore, We need for a new system for big data processing and utilization. First, big data pre-analysis technology is needed as a way to solve big data sharing problem. Pre-analysis is a concept proposed in this paper in order to solve the problem of sharing big data, and it means to provide users with the results generated by pre-analyzing the data in advance. Through preliminary analysis, it is possible to improve the usability of big data by providing information that can grasp the properties and characteristics of big data when the data user searches for big data. In addition, by sharing the summary data or sample data generated through the pre-analysis, it is possible to solve the security problem that may occur when the original data is disclosed, thereby enabling the big data sharing between the data provider and the data user. Second, it is necessary to quickly generate appropriate preprocessing results according to the level of disclosure or network status of raw data and to provide the results to users through big data distribution processing using spark. Third, in order to solve the problem of big traffic, the system monitors the traffic of the network in real time. When preprocessing the data requested by the user, preprocessing to a size available in the current network and transmitting it to the user is required so that no big traffic occurs. In this paper, we present various data sizes according to the level of disclosure through pre - analysis. This method is expected to show a low traffic volume when compared with the conventional method of sharing only raw data in a large number of systems. In this paper, we describe how to solve problems that occur when big data is released and used, and to help facilitate sharing and analysis. The client-server model uses SPARK for fast analysis and processing of user requests. Server Agent and a Client Agent, each of which is deployed on the Server and Client side. The Server Agent is a necessary agent for the data provider and performs preliminary analysis of big data to generate Data Descriptor with information of Sample Data, Summary Data, and Raw Data. In addition, it performs fast and efficient big data preprocessing through big data distribution processing and continuously monitors network traffic. The Client Agent is an agent placed on the data user side. It can search the big data through the Data Descriptor which is the result of the pre-analysis and can quickly search the data. The desired data can be requested from the server to download the big data according to the level of disclosure. It separates the Server Agent and the client agent when the data provider publishes the data for data to be used by the user. In particular, we focus on the Big Data Sharing, Distributed Big Data Processing, Big Traffic problem, and construct the detailed module of the client - server model and present the design method of each module. The system designed on the basis of the proposed model, the user who acquires the data analyzes the data in the desired direction or preprocesses the new data. By analyzing the newly processed data through the server agent, the data user changes its role as the data provider. The data provider can also obtain useful statistical information from the Data Descriptor of the data it discloses and become a data user to perform new analysis using the sample data. In this way, raw data is processed and processed big data is utilized by the user, thereby forming a natural shared environment. The role of data provider and data user is not distinguished, and provides an ideal shared service that enables everyone to be a provider and a user. The client-server model solves the problem of sharing big data and provides a free sharing environment to securely big data disclosure and provides an ideal shared service to easily find big data.

Analysis and Evaluation of Frequent Pattern Mining Technique based on Landmark Window (랜드마크 윈도우 기반의 빈발 패턴 마이닝 기법의 분석 및 성능평가)

  • Pyun, Gwangbum;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.101-107
    • /
    • 2014
  • With the development of online service, recent forms of databases have been changed from static database structures to dynamic stream database structures. Previous data mining techniques have been used as tools of decision making such as establishment of marketing strategies and DNA analyses. However, the capability to analyze real-time data more quickly is necessary in the recent interesting areas such as sensor network, robotics, and artificial intelligence. Landmark window-based frequent pattern mining, one of the stream mining approaches, performs mining operations with respect to parts of databases or each transaction of them, instead of all the data. In this paper, we analyze and evaluate the techniques of the well-known landmark window-based frequent pattern mining algorithms, called Lossy counting and hMiner. When Lossy counting mines frequent patterns from a set of new transactions, it performs union operations between the previous and current mining results. hMiner, which is a state-of-the-art algorithm based on the landmark window model, conducts mining operations whenever a new transaction occurs. Since hMiner extracts frequent patterns as soon as a new transaction is entered, we can obtain the latest mining results reflecting real-time information. For this reason, such algorithms are also called online mining approaches. We evaluate and compare the performance of the primitive algorithm, Lossy counting and the latest one, hMiner. As the criteria of our performance analysis, we first consider algorithms' total runtime and average processing time per transaction. In addition, to compare the efficiency of storage structures between them, their maximum memory usage is also evaluated. Lastly, we show how stably the two algorithms conduct their mining works with respect to the databases that feature gradually increasing items. With respect to the evaluation results of mining time and transaction processing, hMiner has higher speed than that of Lossy counting. Since hMiner stores candidate frequent patterns in a hash method, it can directly access candidate frequent patterns. Meanwhile, Lossy counting stores them in a lattice manner; thus, it has to search for multiple nodes in order to access the candidate frequent patterns. On the other hand, hMiner shows worse performance than that of Lossy counting in terms of maximum memory usage. hMiner should have all of the information for candidate frequent patterns to store them to hash's buckets, while Lossy counting stores them, reducing their information by using the lattice method. Since the storage of Lossy counting can share items concurrently included in multiple patterns, its memory usage is more efficient than that of hMiner. However, hMiner presents better efficiency than that of Lossy counting with respect to scalability evaluation due to the following reasons. If the number of items is increased, shared items are decreased in contrast; thereby, Lossy counting's memory efficiency is weakened. Furthermore, if the number of transactions becomes higher, its pruning effect becomes worse. From the experimental results, we can determine that the landmark window-based frequent pattern mining algorithms are suitable for real-time systems although they require a significant amount of memory. Hence, we need to improve their data structures more efficiently in order to utilize them additionally in resource-constrained environments such as WSN(Wireless sensor network).

The Effects of Self-Congruity and Functional Congruity on e-WOM: The Moderating Role of Self-Construal in Tourism (중국 관광객의 온라인 구전에 대한 자아일치성과 기능일치성의 효과: 자기해석의 조절효과를 중심으로)

  • Yang, Qin;Lee, Young-Chan
    • The Journal of Information Systems
    • /
    • v.25 no.1
    • /
    • pp.1-23
    • /
    • 2016
  • Purpose Self-congruity deals with the effect of symbolic value-expressive attributes on consumer decision and behavior, which is the theoretical foundation of the "non-utilitarian destination positioning". Functional congruity refers to utilitarian evaluation of a product or service by consumers. In addition, recent years, social network services, especially mobile social network services have created many opportunities for e-WOM communication that enables consumers to share personal consumption related information anywhere at any time. Moreover, self-construal is a hot and popular topic that has been discussed in the field of modem psychology as well as in marketing area. This study aims to examine the moderating effect of self-construal on the relationship between self-congruity, functional congruity and tourists' positive electronic word of mouth (e-WOM). Design/methodology/approach In order to verify the hypotheses, we developed a questionnaire with 32 survey items. We measured all the items on a five-point Likert-type scale. We used Sojump.com to collect questionnaire and gathered 218 responses from whom have visited Korea before. After a pilot test, we analyzed the main survey data by using SPSS 20.0 and AMOS 18.0, and employed structural equation modeling to test the hypotheses. We first estimated the measurement model for its overall fit, reliability and validity through a confirmatory factor analysis and used common method bias test to make sure that whether measures are affected by common-method variance. Then we tested the hypotheses through the structural model and used regression analysis to measure moderating effect of self-construal. Findings The results reveal that the effect of self-congruity on tourists' positive e-WOM is stronger for tourists with an independent self-construal compared with those with interdependent self-construal. Moreover, it shows that the effect of functional congruity on tourists' positive e-WOM becomes salient when tourists' self-construal is primed to be interdependent rather than independent. We expect that the results of this study can provide important implications for academic and practical perspective.

Product Recommender Systems using Multi-Model Ensemble Techniques (다중모형조합기법을 이용한 상품추천시스템)

  • Lee, Yeonjeong;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.39-54
    • /
    • 2013
  • Recent explosive increase of electronic commerce provides many advantageous purchase opportunities to customers. In this situation, customers who do not have enough knowledge about their purchases, may accept product recommendations. Product recommender systems automatically reflect user's preference and provide recommendation list to the users. Thus, product recommender system in online shopping store has been known as one of the most popular tools for one-to-one marketing. However, recommender systems which do not properly reflect user's preference cause user's disappointment and waste of time. In this study, we propose a novel recommender system which uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user's preference. The research data is collected from the real-world online shopping store, which deals products from famous art galleries and museums in Korea. The data initially contain 5759 transaction data, but finally remain 3167 transaction data after deletion of null data. In this study, we transform the categorical variables into dummy variables and exclude outlier data. The proposed model consists of two steps. The first step predicts customers who have high likelihood to purchase products in the online shopping store. In this step, we first use logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. We perform above data mining techniques using SAS E-Miner software. In this study, we partition datasets into two sets as modeling and validation sets for the logistic regression and decision trees. We also partition datasets into three sets as training, test, and validation sets for the artificial neural network model. The validation dataset is equal for the all experiments. Then we composite the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. Bagging is the abbreviation of "Bootstrap Aggregation" and it composite outputs from several machine learning techniques for raising the performance and stability of prediction or classification. This technique is special form of the averaging method. Bumping is the abbreviation of "Bootstrap Umbrella of Model Parameter," and it only considers the model which has the lowest error value. The results show that bumping outperforms bagging and the other predictors except for "Poster" product group. For the "Poster" product group, artificial neural network model performs better than the other models. In the second step, we use the market basket analysis to extract association rules for co-purchased products. We can extract thirty one association rules according to values of Lift, Support, and Confidence measure. We set the minimum transaction frequency to support associations as 5%, maximum number of items in an association as 4, and minimum confidence for rule generation as 10%. This study also excludes the extracted association rules below 1 of lift value. We finally get fifteen association rules by excluding duplicate rules. Among the fifteen association rules, eleven rules contain association between products in "Office Supplies" product group, one rules include the association between "Office Supplies" and "Fashion" product groups, and other three rules contain association between "Office Supplies" and "Home Decoration" product groups. Finally, the proposed product recommender systems provides list of recommendations to the proper customers. We test the usability of the proposed system by using prototype and real-world transaction and profile data. For this end, we construct the prototype system by using the ASP, Java Script and Microsoft Access. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The participants for the survey are 173 persons who use MSN Messenger, Daum Caf$\acute{e}$, and P2P services. We evaluate the user satisfaction using five-scale Likert measure. This study also performs "Paired Sample T-test" for the results of the survey. The results show that the proposed model outperforms the random selection model with 1% statistical significance level. It means that the users satisfied the recommended product list significantly. The results also show that the proposed system may be useful in real-world online shopping store.

A study of SCM strategic plan: Focusing on the case of LG electronics (공급사슬 관리 구축전략에 관한 연구: LG전자 사례 중심으로)

  • Lee, Gi-Wan;Lee, Sang-Youn
    • Journal of Distribution Science
    • /
    • v.9 no.3
    • /
    • pp.83-94
    • /
    • 2011
  • Most domestic companies, with the exclusion of major firms, are reluctant to implement a supply chain management (SCM) network into their operations. Most small- and medium-sized enterprises are not even aware of SCM. Due to the inherent total-systems efficiency of SCM, it coordinates domestic manufacturers, subcontractors, distributors, and physical distributors and cuts down on cost of inventory control, as well as demand management. Furthermore, a lack of SCM causes a decrease in competitiveness for domestic companies. The reason lies in the fundamentality of SCM, which is the characteristic of information sharing, process innovation throughout SCM, and the vast range of problems the SCM management tool is able to address. This study suggests the contemplation and reformation of the current SCM situation by analyzing the SCM strategic plan, discourses and logical discussions on the topic, and a successful case for adapting SCM; hence, the study plans to productively "process" SCM. First, it is necessary to contemplate the theoretical background of SCM before discussing how to successfully process SCM. I will describe the concept and background of SCM in Chapter 2, with a definition of SCM, types of SCM promotional activities, fields of SCM, necessity of applying SCM, and the effects of SCM. All of the defects in currently processing SCM will be introduced in Chapter 3. Discussion items include the following: the Bullwhip Effect; the breakdown in supply chain and sales networks due to e-business; the issue that even though the key to a successful SCM is cooperation between the production and distribution company, during the process of SCM, the companies, many times, put their profits first, resulting in a possible defect in demands estimation. Furthermore, the problems of processing SCM in a domestic distribution-production company concern Information Technology; for example, the new system introduced to the company is not compatible with the pre-existing document architecture. Second, for effective management, distribution and production companies should cooperate and enhance their partnership in the aspect of the corporation; however, in reality, this seldom occurs. Third, in the aspect of the work process, introducing SCM could provoke corporations during the integration of the distribution-production process. Fourth, to increase the achievement of the SCM strategy process, they need to set up a cross-functional team; however, many times, business partners lack the cooperation and business-information sharing tools necessary to effect the transition to SCM. Chapter 4 will address an SCM strategic plan and a case study of LG Electronics. The purpose of the strategic plan, strategic plans for types of business, adopting SCM in a distribution company, and the global supply chain process of LG Electronics will be introduced. The conclusion of the study is located in Chapter 5, which addresses the issue of the fierce competition that companies currently face in the global market environment and their increased investment in SCM, in order to better cope with short product life cycle and high customer expectations. The SCM management system has evolved through the adaptation of improved information, communication, and transportation technologies; now, it demands the utilization of various strategic resources. The introduction of SCM provides benefits to the management of a network of interconnected businesses by securing customer loyalty with cost and time savings, derived through the consolidation of many distribution systems; additionally, SCM helps enterprises form a wide range of marketing strategies. Thus, we could conclude that not only the distributors but all types of businesses should adopt the systems approach to supply chain strategies. SCM deals with the basic stream of distribution and increases the value of a company by replacing physical distribution with information. By the company obtaining and sharing ready information, it is able to create customer satisfaction at the end point of delivery to the consumer.

  • PDF

Intelligent Brand Positioning Visualization System Based on Web Search Traffic Information : Focusing on Tablet PC (웹검색 트래픽 정보를 활용한 지능형 브랜드 포지셔닝 시스템 : 태블릿 PC 사례를 중심으로)

  • Jun, Seung-Pyo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.93-111
    • /
    • 2013
  • As Internet and information technology (IT) continues to develop and evolve, the issue of big data has emerged at the foreground of scholarly and industrial attention. Big data is generally defined as data that exceed the range that can be collected, stored, managed and analyzed by existing conventional information systems and it also refers to the new technologies designed to effectively extract values from such data. With the widespread dissemination of IT systems, continual efforts have been made in various fields of industry such as R&D, manufacturing, and finance to collect and analyze immense quantities of data in order to extract meaningful information and to use this information to solve various problems. Since IT has converged with various industries in many aspects, digital data are now being generated at a remarkably accelerating rate while developments in state-of-the-art technology have led to continual enhancements in system performance. The types of big data that are currently receiving the most attention include information available within companies, such as information on consumer characteristics, information on purchase records, logistics information and log information indicating the usage of products and services by consumers, as well as information accumulated outside companies, such as information on the web search traffic of online users, social network information, and patent information. Among these various types of big data, web searches performed by online users constitute one of the most effective and important sources of information for marketing purposes because consumers search for information on the internet in order to make efficient and rational choices. Recently, Google has provided public access to its information on the web search traffic of online users through a service named Google Trends. Research that uses this web search traffic information to analyze the information search behavior of online users is now receiving much attention in academia and in fields of industry. Studies using web search traffic information can be broadly classified into two fields. The first field consists of empirical demonstrations that show how web search information can be used to forecast social phenomena, the purchasing power of consumers, the outcomes of political elections, etc. The other field focuses on using web search traffic information to observe consumer behavior, identifying the attributes of a product that consumers regard as important or tracking changes on consumers' expectations, for example, but relatively less research has been completed in this field. In particular, to the extent of our knowledge, hardly any studies related to brands have yet attempted to use web search traffic information to analyze the factors that influence consumers' purchasing activities. This study aims to demonstrate that consumers' web search traffic information can be used to derive the relations among brands and the relations between an individual brand and product attributes. When consumers input their search words on the web, they may use a single keyword for the search, but they also often input multiple keywords to seek related information (this is referred to as simultaneous searching). A consumer performs a simultaneous search either to simultaneously compare two product brands to obtain information on their similarities and differences, or to acquire more in-depth information about a specific attribute in a specific brand. Web search traffic information shows that the quantity of simultaneous searches using certain keywords increases when the relation is closer in the consumer's mind and it will be possible to derive the relations between each of the keywords by collecting this relational data and subjecting it to network analysis. Accordingly, this study proposes a method of analyzing how brands are positioned by consumers and what relationships exist between product attributes and an individual brand, using simultaneous search traffic information. It also presents case studies demonstrating the actual application of this method, with a focus on tablets, belonging to innovative product groups.

The Effect of Mutual Trust on Relational Performance in Supplier-Buyer Relationships for Business Services Transactions (재상업복무교역중적매매관계중상호신임대관계적효적영향(在商业服务交易中的买卖关系中相互信任对关系绩效的影响))

  • Noh, Jeon-Pyo
    • Journal of Global Scholars of Marketing Science
    • /
    • v.19 no.4
    • /
    • pp.32-43
    • /
    • 2009
  • Trust has been studied extensively in psychology, economics, and sociology, and its importance has been emphasized not only in marketing, but also in business disciplines in general. Unlike past relationships between suppliers and buyers, which take considerable advantage of private networks and may involve unethical business practices, partnerships between suppliers and buyers are at the core of success for industrial marketing amid intense global competition in the 21st century. A high level of mutual cooperation occurs through an exchange relationship based on trust, which brings long-term benefits, competitive enhancements, and transaction cost reductions, among other benefits, for both buyers and suppliers. In spite of the important role of trust, existing studies in buy-supply situations overlook the role of trust and do not systematically analyze the effect of trust on relational performance. Consequently, an in-depth study that determines the relation of trust to the relational performance between buyers and suppliers of business services is absolutely needed. Business services in this study, which include those supporting the manufacturing industry, are drawing attention as the economic growth engine for the next generation. The Korean government has selected business services as a strategic area for the development of manufacturing sectors. Since the demands for opening business services markets are becoming fiercer, the competitiveness of the business service industry must be promoted now more than ever. The purpose of this study is to investigate the effect of the mutual trust between buyers and suppliers on relational performance. Specifically, this study proposed a theoretical model of trust-relational performance in the transactions of business services and empirically tested the hypotheses delineated from the framework. The study suggests strategic implications based on research findings. Empirical data were collected via multiple methods, including via telephone, mail, and in-person interviews. Sample companies were knowledge-based companies supplying and purchasing business services in Korea. The present study collected data on a dyadic basis. Each pair of sample companies includes a buying company and its corresponding supplying company. Mutual trust was traced for each pair of companies. This study proposes a model of trust-relational performance of buying-supplying for business services. The model consists of trust and its antecedents and consequences. The trust of buyers is classified into trust toward the supplying company and trust toward salespersons. Viewing trust both at the individual level and the organizational level is based on the research of Doney and Cannon (1997). Normally, buyers are the subject of trust, but this study supposes that suppliers are the subjects. Hence, it uniquely focused on the bilateral perspective of perceived risk. In other words, suppliers, like buyers, are the subject of trust since transactions are normally bilateral. From this point of view, suppliers' trust in buyers is as important as buyers' trust in suppliers. The suppliers' trust is influenced by the extent to which it trusts the buying companies and the buyers. This classification of trust using an individual level and an organization level is based on the suggestion of Doney and Cannon (1997). Trust affects the process of supplier selection, which works in a bilateral manner. Suppliers are actively involved in the supplier selection process, working very closely with buyers. In addition, the process is affected by the extent to which each party trusts its partners. The selection process consists of certain steps: recognition, information search, supplier selection, and performance evaluation. As a result of the process, both buyers and suppliers evaluate the performance and take corrective actions on the basis of such outcomes as tangible, intangible, and/or side effects. The measurement of trust used for the present study was developed on the basis of the studies of Mayer, Davis and Schoorman (1995) and Mayer and Davis (1999). Based on their recommendations, the three dimensions of trust used for the study include ability, benevolence, and integrity. The original questions were adjusted to the context of the transactions of business services. For example, a question such as "He/she has professional capabilities" has been changed to "The salesperson showed professional capabilities while we talked about our products." The measurement used for this study differs from those used in previous studies (Rotter 1967; Sullivan and Peterson 1982; Dwyer and Oh 1987). The measurements of the antecedents and consequences of trust used for this study were developed on the basis of Doney and Cannon (1997). The original questions were adjusted to the context of transactions in business services. In particular, questions were developed for both buyers and suppliers to address the following factors: reputation (integrity, customer care, good-will), market standing (company size, market share, positioning in the industry), willingness to customize (product, process, delivery), information sharing (proprietary information, private information), willingness to maintain relationships, perceived professionalism, authority empowerment, buyer-seller similarity, and contact frequency. As a consequential variable of trust, relational performance was measured. Relational performance is classified into tangible effects, intangible effects, and side effects. Tangible effects include financial performance; intangible effects include improvements in relations, network developing, and internal employee satisfaction; side effects include those not included either in the tangible or intangible effects. Three hundred fifty pairs of companies were contacted, and one hundred five pairs of companies responded. After deleting five company pairs because of incomplete responses, one hundred five pairs of companies were used for data analysis. The response ratio of the companies used for data analysis is 30% (105/350), which is above the average response ratio in industrial marketing research. As for the characteristics of the respondent companies, the majority of the companies operate service businesses for both buyers (85.4%) and suppliers (81.8%). The majority of buyers (76%) deal with consumer goods, while the majority of suppliers (70%) deal with industrial goods. This may imply that buyers process the incoming material, parts, and components to produce the finished consumer goods. As indicated by their report of the length of acquaintance with their partners, suppliers appear to have longer business relationships than do buyers. Hypothesis 1 tested the effects of buyer-supplier characteristics on trust. The salesperson's professionalism (t=2.070, p<0.05) and authority empowerment (t=2.328, p<0.05) positively affected buyers' trust toward suppliers. On the other hand, authority empowerment (t=2.192, p<0.05) positively affected supplier trust toward buyers. For both buyers and suppliers, the degree of authority empowerment plays a crucial role in the maintenance of their trust in each other. Hypothesis 2 tested the effects of buyerseller relational characteristics on trust. Buyers tend to trust suppliers, as suppliers make every effort to contact buyers (t=2.212, p<0.05). This tendency has also been shown to be much stronger for suppliers (t=2.591, p<0.01). On the other hand suppliers trust buyers because suppliers perceive buyers as being similar to themselves (t=2.702, p<0.01). This finding confirmed the results of Crosby, Evans, and Cowles (1990), which reported that suppliers and buyers build relationships through regular meetings, either for business or personal matters. Hypothesis 3 tested the effects of trust on perceived risk. It has been found that for both suppliers and buyers the lower is the trust, the higher is the perceived risk (t=-6.621, p<0.01 for buyers; t=-2.437, p<0.05). Interestingly, this tendency has been shown to be much stronger for buyers than for suppliers. One possible explanation for this higher level of perceived risk is that buyers normally perceive higher risks than do suppliers in transactions involving business services. For this reason, it is necessary for suppliers to implement risk reduction strategies for buyers. Hypothesis 4 tested the effects of trust on information searching. It has been found that for both suppliers and buyers, contrary to expectation, trust depends on their partner's reputation (t=2.929, p<0.01 for buyers; t=2.711, p<0.05 for suppliers). This finding shows that suppliers with good reputations tend to be trusted. Prior experience did not show any significant relationship with trust for either buyers or suppliers. Hypothesis 5 tested the effects of trust on supplier/buyer selection. Unlike buyers, suppliers tend to trust buyers when they think that previous transactions with buyers were important (t=2.913 p<0.01). However, this study did not show any significant relationship between source loyalty and the trust of buyers in suppliers. Hypothesis 6 tested the effects of trust on relational performances. For buyers and suppliers, financial performance reportedly improved when they trusted their partners (t=2.301, p<0.05 for buyers; t=3.692, p<0.01 for suppliers). It is interesting that this tendency was much stronger for suppliers than it was for buyers. Similarly, competitiveness was reported to improve when buyers and suppliers trusted their partners (t=3.563, p<0.01 for buyers; t=3.042, p<0.01 for suppliers). For suppliers, efficiency and productivity were reportedly improved when they trusted buyers (t=2.673, p<0.01). Other performance indices showed insignificant relationships with trust. The findings of this study have some strategic implications. First and most importantly, trust-based transactions are beneficial for both suppliers and buyers. As verified in the study, financial performance can be improved through efforts to build and maintain mutual trust. Similarly, competitiveness can be increased through the same kinds of effort. Second, trust-based transactions can facilitate the reduction of perceived risks inherent in the purchasing situation. This finding has implications for both suppliers and buyers. It is generally believed that buyers perceive higher risks in a highly involved purchasing situation. To reduce risks, previous studies have recommended that suppliers devise risk-reducing tactics. Moving beyond these recommendations, the present study uniquely focused on the bilateral perspective of perceived risk. In other words, suppliers are also susceptible to perceived risks, especially when they supply services that require very technical and sophisticated manipulations and maintenance. Consequently, buyers and suppliers must solve problems together in close collaboration. Hence, mutual trust plays a crucial role in the problem-solving process. Third, as found in this study, the more authority a salesperson has, the more he or she can be trusted. This finding is very important with regard to tactics. Building trust is a long-term assignment; however, when mutual trust has not been developed, suppliers can overcome the problems they encounter by empowering a salesperson with the authority to make certain decisions. This finding applies to suppliers as well.

  • PDF

An Exploratory Study on Channel Equity of Electronic Goods (가전제품 소비자의 Channel Equity에 관한 탐색적 연구)

  • Suh, Yong-Gu;Lee, Eun-Kyung
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.3
    • /
    • pp.1-25
    • /
    • 2008
  • Ⅰ. Introduction Retailers in the 21st century are being told that future retailers are those who can execute seamless multi-channel access. The reason is that retailers should be where shoppers want them, when they want them anytime, anywhere and in multiple formats. Multi-channel access is considered one of the top 10 trends of all business in the next decade (Patricia T. Warrington, et al., 2007) And most firms use both direct and indirect channels in their markets. Given this trend, we need to evaluate a channel equity more systematically than before as this issue is expected to get more attention to consumers as well as to brand managers. Consumers are becoming very much confused concerning the choice of place where they shop for durable goods as there are at least 6-7 retail options. On the other hand, manufacturers have to deal with category killers, their dealers network, Internet shopping malls, and other avenue of distribution channels and they hope their retail channel behave like extensions of their own companies. They would like their products to be foremost in the retailer's mind-the first to be proposed and effectively communicated to potential customers. To enable this hope to come reality, they should know each channel's advantages and disadvantages from consumer perspectives. In addition, customer satisfaction is the key determinant of retail customer loyalty. However, there are only a few researches regarding the effects of shopping satisfaction and perceptions on consumers' channel choices and channels. The purpose of this study was to assess Korean consumers' channel choice and satisfaction towards channels they prefer to use in the case of electronic goods shopping. Korean electronic goods retail market is one of good example of multi-channel shopping environments. As the Korea retail market has been undergoing significant structural changes since it had opened to global retailers in 1996, new formats such as hypermarkets, Internet shopping malls and category killers have arrived for the last decade. Korean electronic goods shoppers have seven major channels : (1)category killers (2) hypermarket (3) manufacturer dealer shop (4) Internet shopping malls (5) department store (6) TV home-shopping (7) speciality shopping arcade. Korean retail sector has been modernized with amazing speed for the last decade. Overall summary of major retail channels is as follows: Hypermarket has been number 1 retailer type in sales volume from 2003 ; non-store retailing has been number 2 from 2007 ; department store is now number 3 ; small scale category killers are growing rapidly in the area of electronics and office products in particular. We try to evaluate each channel's equity using a consumer survey. The survey was done by telephone interview with 1000 housewife who lives nationwide. Sampling was done according to 2005 national census and average interview time was 10 to 15 minutes. Ⅱ. Research Summary We have found that seven major retail channels compete with each other within Korean consumers' minds in terms of price and service. Each channel seem to have its unique selling points. Department stores were perceived as the best electronic goods shopping destinations due to after service. Internet shopping malls were perceived as the convenient channel owing to price checking. Category killers and hypermarkets were more attractive in both price merits and location conveniences. On the other hand, manufacturers dealer networks were pulling customers mainly by location and after service. Category killers and hypermarkets were most beloved retail channel for Korean consumers. However category killers compete mainly with department stores and shopping arcades while hypermarkets tend to compete with Internet and TV home shopping channels. Regarding channel satisfaction, the top 3 channels were service-driven retailers: department stores (4.27); dealer shop (4.21); and Internet shopping malls (4.21). Speciality shopping arcade(3.98) were the least satisfied channels among Korean consumers. Ⅲ. Implications We try to identify the whole picture of multi-channel retail shopping environments and its implications in the context of Korean electronic goods. From manufacturers' perspectives, multi-channel may cause channel conflicts. Furthermore, inter-channel competition draws much more attention as hypermarkets and category killers have grown rapidly in recent years. At the same time, from consumers' perspectives, 'buy where' is becoming an important buying decision as it would decide the level of shopping satisfaction. We need to develop the concept of 'channel equity' to manage multi-channel distribution effectively. Firms should measure and monitor their prime channel equity in regular basis to maximize their channel potentials. Prototype channel equity positioning map has been developed as follows. We expect more studies to develop the concept of 'channel equity' in the future.

  • PDF