• Title/Summary/Keyword: Network IDS

Search Result 313, Processing Time 0.021 seconds

Adaptive Intrusion Detection Algorithm based on Learning Algorithm (학습 알고리즘 기반의 적응형 침입 탐지 알고리즘)

  • Sim, Kwee-Bo;Yang, Jae-Won;Lee, Dong-Wook;Seo, Dong-Il;Choi, Yang-Seo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.75-81
    • /
    • 2004
  • Signature based intrusion detection system (IDS), having stored rules for detecting intrusions at the library, judges whether new inputs are intrusion or not by matching them with the new inputs. However their policy has two restrictions generally. First, when they couldn`t make rules against new intrusions, false negative (FN) errors may are taken place. Second, when they made a lot of rules for maintaining diversification, the amount of resources grows larger proportional to their amount. In this paper, we propose the learning algorithm which can evolve the competent of anomaly detectors having the ability to detect anomalous attacks by genetic algorithm. The anomaly detectors are the population be composed of by following the negative selection procedure of the biological immune system. To show the effectiveness of proposed system, we apply the learning algorithm to the artificial network environment, which is a computer security system.

Detecting Jamming Attacks in MANET (MANET에서의 전파방해 공격 탐지)

  • Shrestha, Rakesh;Lee, Sang-Duk;Choi, Dong-You;Han, Seung-Jo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.482-488
    • /
    • 2009
  • Mobile Ad-hoc Networks provide communication without a centralized infrastructure, which makes them suitable for communication in disaster areas or when quick deployment is needed. On the other hand, they are susceptible to malicious exploitation and have to face different challenges at different layers due to its open Ad-hoc network structure which lacks previous security measures. Denial of service (DoS) attack is one that interferes with the radio transmission channel causing a jamming attack. In this kind of attack, an attacker emits a signal that interrupts the energy of the packets causing many errors in the packet currently being transmitted. In harsh environments where there is constant traffic, a jamming attack causes serious problems; therefore measures to prevent these types of attacks are required. The objective of this paper is to carry out the simulation of the jamming attack on the nodes and determine the DoS attacks in OPNET so as to obtain better results. We have used effective anomaly detection system to detect the malicious behaviour of the jammer node and analyzed the results that deny channel access by jamming in the mobile Ad-hoc networks.

Study of Conversions Security Management System, Co-Relation Rule-Set scenario and architecture for incidence detection (융합보안관제환경을 위한 아키텍처 구축 및 활용 방안에 대한 연구)

  • Hwang, Donguk;Lee, Sanghun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.2
    • /
    • pp.353-371
    • /
    • 2014
  • We already have seen many studies and articles about the methodology responding the security risks and threats. But we still have some controversial subjects to be settled. Now, we are living in the era that we should focus on how to use the security systems instead of how to make it. In this point of view, a company need to find out the answer for these questions, which security risks have to be handled in a corporate, which system is better for responding the security threats, and how we can build necessary security architecture in case of developing systems. In this article, we'd like to study on-site scenarios threatening the corporate assets, the limit on dealing with these threats, and how to consolidate the security events and information from enormous assets. Also, we'd like to search for the direction form the actual cases which have shown the desired effect from converging the assets and network informations.

Classification Performance Improvement of UNSW-NB15 Dataset Based on Feature Selection (특징선택 기법에 기반한 UNSW-NB15 데이터셋의 분류 성능 개선)

  • Lee, Dae-Bum;Seo, Jae-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.5
    • /
    • pp.35-42
    • /
    • 2019
  • Recently, as the Internet and various wearable devices have appeared, Internet technology has contributed to obtaining more convenient information and doing business. However, as the internet is used in various parts, the attack surface points that are exposed to attacks are increasing, Attempts to invade networks aimed at taking unfair advantage, such as cyber terrorism, are also increasing. In this paper, we propose a feature selection method to improve the classification performance of the class to classify the abnormal behavior in the network traffic. The UNSW-NB15 dataset has a rare class imbalance problem with relatively few instances compared to other classes, and an undersampling method is used to eliminate it. We use the SVM, k-NN, and decision tree algorithms and extract a subset of combinations with superior detection accuracy and RMSE through training and verification. The subset has recall values of more than 98% through the wrapper based experiments and the DT_PSO showed the best performance.

An Efficient Method for Detecting Denial of Service Attacks Using Kernel Based Data (커널 기반 데이터를 이용한 효율적인 서비스 거부 공격 탐지 방법에 관한 연구)

  • Chung, Man-Hyun;Cho, Jae-Ik;Chae, Soo-Young;Moon, Jong-Sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.1
    • /
    • pp.71-79
    • /
    • 2009
  • Currently much research is being done on host based intrusion detection using system calls which is a portion of kernel based data. Sequence based and frequency based preprocessing methods are mostly used in research for intrusion detection using system calls. Due to the large amount of data and system call types, it requires a significant amount of preprocessing time. Therefore, it is difficult to implement real-time intrusion detection systems. Despite this disadvantage, the frequency based method which requires a relatively small amount of preprocessing time is usually used. This paper proposes an effective method for detecting denial of service attacks using the frequency based method. Principal Component Analysis(PCA) will be used to select the principle system calls and a bayesian network will be composed and the bayesian classifier will be used for the classification.

A Study on the Improvement of Effectiveness in National Cyber Security Monitoring and Control Services (국가 전산망 보안관제업무의 효율적 수행방안에 관한 연구)

  • Kim, Young-Jin;Lee, Su-Yeon;Kwon, Hun-Yeong;Lim, Jong-In
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.1
    • /
    • pp.103-111
    • /
    • 2009
  • Recently, cyber attacks against public communications networks are getting more complicated and varied. Moreover, in some cases, one country could make systematic attacks at a national level against another country to steal its confidential information and intellectual property. Therefore, the issue of cyber attacks is now regarded as a new major threat to national security. The conventional way of operating individual information security systems such as IDS and IPS may not be sufficient to cope with those attacks committed by highly-motivated attackers with significant resources. As a result, the monitoring and control of cyber security, which enables attack detection, analysis and response on a real-time basis has become of paramount importance. This paper discusses how to improve efficiency and effectiveness of national cyber security monitoring and control services. It first reviews major threats to the public communications network and how the responses to these threats are made and then it proposes a new approach to improve the national cyber security monitoring and control services.

Designing a system to defend against RDDoS attacks based on traffic measurement criteria after sending warning alerts to administrators (관리자에게 경고 알림을 보낸 후 트래픽 측정을 기준으로 RDDoS 공격을 방어하는 시스템 설계)

  • Cha Yeansoo;Kim Wantae
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.1
    • /
    • pp.109-118
    • /
    • 2024
  • Recently, a social issue has arisen involving RDDoS attacks following the sending of threatening emails to security administrators of companies and institutions. According to a report published by the Korea Internet & Security Agency and the Ministry of Science and ICT, survey results indicate that DDoS attacks are increasing. However, the top response in the survey highlighted the difficulty in countering DDoS attacks due to issues related to security personnel and costs. In responding to DDoS attacks, administrators typically detect anomalies through traffic monitoring, utilizing security equipment and programs to identify and block attacks. They also respond by employing DDoS mitigation solutions offered by external security firms. However, a challenge arises from the initial failure in early response to DDoS attacks, leading to frequent use of detection and mitigation measures. This issue, compounded by increased costs, poses a problem in effectively countering DDoS attacks. In this paper, we propose a system that creates detection rules, periodically collects traffic using mail detection and IDS, notifies administrators when rules match, and Based on predefined threshold, we use IPS to block traffic or DDoS mitigation. In the absence of DDoS mitigation, the system sends urgent notifications to administrators and suggests that you apply for and use of a cyber shelter or DDoS mitigation. Based on this, the implementation showed that network traffic was reduced from 400 Mbps to 100 Mbps, enabling DDoS response. Additionally, due to the time and expense involved in modifying detection and blocking rules, it is anticipated that future research could address cost-saving through reduced usage of DDoS mitigation by utilizing artificial intelligence for rule creation and modification, or by generating rules in new ways.

Performance Comparison of Transformer-based Intrusion Detection Model According to the Change of Character Encoding (문자 인코딩 방식의 변화에 따른 트랜스포머 기반 침입탐지 모델의 탐지성능 비교)

  • Kwan-Jae Kim;Soo-Jin Lee
    • Convergence Security Journal
    • /
    • v.24 no.3
    • /
    • pp.41-49
    • /
    • 2024
  • A tokenizer, which is a key component of the Transformer model, lacks the ability to effectively comprehend numerical data. Therefore, to develop a Transformer-based intrusion detection model that can operate within a real-world network environment by training packet payloads as sentences, it is necessary to convert the hexadecimal packet payloads into a character-based format. In this study, we applied three character encoding methods to convert packet payloads into numeric or character format and analyzed how detection performance changes when training them on transformer architecture. The experimental dataset was generated by extracting packet payloads from PCAP files included in the UNSW-NB15 dataset, and the RoBERTa was used as the training model. The experimental results demonstrate that the ISO-8859-1 encoding scheme achieves the highest performance in both binary and multi-class classification. In addition, when the number of tokens is set to 512 and the maximum number of epochs is set to 15, the multi-class classification accuracy is improved to 88.77%.

Optimal Path Finding Considering Smart Card Terminal ID Chain OD - Focused on Seoul Metropolitan Railway Network - (교통카드 단말기ID Chain OD를 반영한 최적경로탐색 - 수도권 철도 네트워크를 중심으로 -)

  • Lee, Mee Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.40-53
    • /
    • 2018
  • In smart card data, movement of railway passengers appears in order of smart card terminal ID. The initial terminal ID holds information on the entering station's tag-in railway line, the final terminal ID the exit station tag-out railway line, and the middle terminal ID the transfer station tag subway line. During the past, when the metropolitan city rail consisted of three public corporations (Seoul Metro, Incheon Transit Corporation, and Korail), OD data was expressed in two metrics of initial and final smart card terminal ID. Recently, with the entrance of private corporations like Shinbundang Railroad Corporation, and UI Corporation, inclusion of entering transfer line terminal ID and exiting transfer line terminal ID as part of Chain OD has become standard. Exact route construction using Chain OD has thus become integral as basic data for revenue allocation amongst metropolitan railway transport corporations. Accordingly, path detection in railway networks has evolved to an optimal path detection problem using Chain OD, hence calling for a renewed solution method. This research proposes an optimal path detection method between the initial terminal ID and final terminal ID of Chain OD terminal IDs within the railway network. Here, private line transfer TagIn/Out must be reflected in optimal path detection using Chain OD. To achieve this, three types of link-based optimum path detection methods are applied in order of 1. node-link, 2. link-link, 3. link-node. The method proposed based on additional path costs is shown to satisfy the optimal conditions.

Managing Duplicate Memberships of Websites : An Approach of Social Network Analysis (웹사이트 중복회원 관리 : 소셜 네트워크 분석 접근)

  • Kang, Eun-Young;Kwahk, Kee-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.153-169
    • /
    • 2011
  • Today using Internet environment is considered absolutely essential for establishing corporate marketing strategy. Companies have promoted their products and services through various ways of on-line marketing activities such as providing gifts and points to customers in exchange for participating in events, which is based on customers' membership data. Since companies can use these membership data to enhance their marketing efforts through various data analysis, appropriate website membership management may play an important role in increasing the effectiveness of on-line marketing campaign. Despite the growing interests in proper membership management, however, there have been difficulties in identifying inappropriate members who can weaken on-line marketing effectiveness. In on-line environment, customers tend to not reveal themselves clearly compared to off-line market. Customers who have malicious intent are able to create duplicate IDs by using others' names illegally or faking login information during joining membership. Since the duplicate members are likely to intercept gifts and points that should be sent to appropriate customers who deserve them, this can result in ineffective marketing efforts. Considering that the number of website members and its related marketing costs are significantly increasing, it is necessary for companies to find efficient ways to screen and exclude unfavorable troublemakers who are duplicate members. With this motivation, this study proposes an approach for managing duplicate membership based on the social network analysis and verifies its effectiveness using membership data gathered from real websites. A social network is a social structure made up of actors called nodes, which are tied by one or more specific types of interdependency. Social networks represent the relationship between the nodes and show the direction and strength of the relationship. Various analytical techniques have been proposed based on the social relationships, such as centrality analysis, structural holes analysis, structural equivalents analysis, and so on. Component analysis, one of the social network analysis techniques, deals with the sub-networks that form meaningful information in the group connection. We propose a method for managing duplicate memberships using component analysis. The procedure is as follows. First step is to identify membership attributes that will be used for analyzing relationship patterns among memberships. Membership attributes include ID, telephone number, address, posting time, IP address, and so on. Second step is to compose social matrices based on the identified membership attributes and aggregate the values of each social matrix into a combined social matrix. The combined social matrix represents how strong pairs of nodes are connected together. When a pair of nodes is strongly connected, we expect that those nodes are likely to be duplicate memberships. The combined social matrix is transformed into a binary matrix with '0' or '1' of cell values using a relationship criterion that determines whether the membership is duplicate or not. Third step is to conduct a component analysis for the combined social matrix in order to identify component nodes and isolated nodes. Fourth, identify the number of real memberships and calculate the reliability of website membership based on the component analysis results. The proposed procedure was applied to three real websites operated by a pharmaceutical company. The empirical results showed that the proposed method was superior to the traditional database approach using simple address comparison. In conclusion, this study is expected to shed some light on how social network analysis can enhance a reliable on-line marketing performance by efficiently and effectively identifying duplicate memberships of websites.