• Title/Summary/Keyword: Network Functions Virtualization

Search Result 42, Processing Time 0.019 seconds

Autoscaling Mechanism based on Execution-times for VNFM in NFV Platforms (NFV 플랫폼에서 VNFM의 실행 시간에 기반한 자동 자원 조정 메커니즘)

  • Mehmood, Asif;Diaz Rivera, Javier;Khan, Talha Ahmed;Song, Wang-Cheol
    • KNOM Review
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • The process to determine the required number of resources depends on the factors being considered. Autoscaling is one such mechanism that uses a wide range of factors to decide and is a critical process in NFV. As the networks are being shifted onto the cloud after the invention of SDN, we require better resource managers in the future. To solve this problem, we propose a solution that allows the VNFMs to autoscale the system resources depending on the factors such as overhead of hyperthreading, number of requests, execution-times for the virtual network functions. It is a known fact that the hyperthreaded virtual-cores are not fully capable of performing like the physical cores. Also, as there are different types of core having different frequencies so the process to calculate the number of cores needs to be measured accurately and precisely. The platform independency is achieved by proposing another solution in the form of a monitoring microservice, which communicates through APIs. Hence, by the use of our autoscaling application and a monitoring microservice, we enhance the resource provisioning process to meet the criteria of future networks.

A Study on Efficient Executions of MPI Parallel Programs in Memory-Centric Computer Architecture

  • Lee, Je-Man;Lee, Seung-Chul;Shin, Dongha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • In this paper, we present a technique that executes MPI parallel programs, that are developed on processor-centric computer architecture, more efficiently on memory-centric computer architecture without program modification. The technique we present here improves performance by replacing low-speed data communication over the network of MPI library functions with high-speed data communication using the property called fast large shared memory of memory-centric computer architecture. The technique we present in the paper is implemented in two programs. The first program is a modified MPI library called MC-MPI-LIB that runs MPI parallel programs more efficiently on memory-centric computer architecture preserving the semantics of MPI library functions. The second program is a simulation program called MC-MPI-SIM that simulates the performance of memory-centric computer architecture on processor-centric computer architecture. We developed and tested the programs on distributed systems environment deployed on Docker based virtualization. We analyzed the performance of several MPI parallel programs and showed that we achieved better performance on memory-centric computer architecture. Especially we could see very high performance on the MPI parallel programs with high communication overhead.