• 제목/요약/키워드: Network Fault

검색결과 1,134건 처리시간 0.023초

풍력전단지의 계통 연계 운전에 따른 보호 계전기 설정치 정정에 관한 고찰 (The Study on Correction of Protective Relaying Set Value for the Power Electric Network Paralleled with Wind Farm)

  • 장성일;최돈만;최정환;김광호;오종률;김주열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.487-490
    • /
    • 2002
  • Wind farm paralleled with electric power network can supply the power into a power network not only the normal conditions, but also the fault conditions of distribution network. If the fault happened in the power line with wind farm, the fault current level measured in a relaying point might be lower than that of distribution network without wind turbine generator. Consequently, it is difficult to detect the fault happened in the distribution network connected with wind generator. This paper describes the influence of wind turbine generator on the protective relaying system for detecting the fault occurred in a power line network. Simulation results shows that the fault current depends on the fault impedance, location, and the capacity of wind farm and distribution network load.

  • PDF

에이전트들 간의 협력을 통한 RBR 기반의 네트워크 구성 장애 관리 알고리즘 (RBR Based Network Configuration Fault Management Algorithms using Agent Collaboration)

  • 조광종;안성진;정진욱
    • 정보처리학회논문지C
    • /
    • 제9C권4호
    • /
    • pp.497-504
    • /
    • 2002
  • 본 논문에서는 시스템의 네트워크 구성 장애를 관리하기 위한 관리 모델과 에이전트들 간의 협력을 통한 장애의 진단 및 복구 알고리즘을 제시하고 있다. 관리 모델에는 장애의 검출, 진단, 복구의 세 단계로 이루어지며 각각은 RBR(Rule-Based Reasoning)에 기반으로 하여 규칙기반 지식 데이터베이스에 있는 규칙을 이용하여 네트워크의 구성 장애를 진단하고 복구한다. 또한 관리 도메인 상의 네트워크에 분포하고 있는 여러 에이전트들 간의 협력을 통하여 시스템 단독으로는 해결할 수 없는 복잡한 문제를 해결하거나 네트워크의 상황까지 고려하여 진단하고 복구함으로써 효율적인 시스템의 네트워크 구성 관리 알고리즘을 제시하고 있다.

모듈신경망을 이용한 다중고장 진단기법 (Multiple Fault Diagnosis Method by Modular Artificial Neural Network)

  • 배용환;이석희
    • 한국정밀공학회지
    • /
    • 제15권2호
    • /
    • pp.35-44
    • /
    • 1998
  • This paper describes multiple fault diagnosis method in complex system with hierarchical structure. Complex system is divided into subsystem, item and component. For diagnosing this hierarchical complex system, it is necessary to implement special neural network. We introduced Modular Artificial Neural Network(MANN) for this purpose. MANN consists of four level neural network, first level for symptom classification, second level for item fault diagnosis, third level for component symptom classification, forth level for component fault diagnosis. Each network is multi layer perceptron with 7 inputs, 30 hidden node and 7 outputs trained by backpropagation. UNIX IPC(Inter Process Communication) is used for implementing MANN with multitasking and message transfer between processes in SUN workstation. We tested MANN in reactor system.

  • PDF

이산 웨이블릿 변환과 신경회로망을 이용한 FRTU의 고장판단 능력 개선에 관한 연구 (A Study for the Improvement of the Fault Decision Capability of FRTU using Discrete Wavelet Transform and Neural Network)

  • 홍대승;고윤석;강태구;박학열;임화영
    • 전기학회논문지
    • /
    • 제56권7호
    • /
    • pp.1183-1190
    • /
    • 2007
  • This paper proposes the improved fault decision algorithm using DWT(Discrete Wavelet Transform) and ANNs for the FRTU(Feeder Remote Terminal Unit) on the feeder in the power distribution system. Generally, the FRTU has the fault decision scheme detecting the phase fault, the ground fault. Especially FRTU has the function for 2000ms. This function doesn't operate FI(Fault Indicator) for the Inrush current generated in switching time. But it has a defect making it impossible for the FI to be operated from the real fault current in inrush restraint time. In such a case, we can not find the fault zone from FI information. Accordingly, the improved fault recognition algorithm is needed to solve this problem. The DWT analysis gives the frequency and time-scale information. The neural network system as a fault recognition was trained to distinguish the inrush current from the fault status by a gradient descent method. In this paper, fault recognition algorithm is improved by using voltage monitoring system, DWT and neural network. All of the data were measured in actual 22.9kV power distribution system.

내고장성 전동차 네트워크를 위한 결함 발생기 연구 (A Study on the Implementation of the Fault-Injector for the Fault Tolerant Train Communication Network)

  • 유재윤;박재현
    • 제어로봇시스템학회논문지
    • /
    • 제7권10호
    • /
    • pp.859-866
    • /
    • 2001
  • Recently, fault injection techniques are used for evaluation of the fault coverage properties of safety-critical systems. This paper describes the TCN Fault Injector(TFI) implemented for TCN safety analysis. The implemented TFI injects network level faults to Intelligent MVB Controller that is designed for the Korean High Speed Train. With TFI, it can be verified whether the MVB controller meets TCN specification and its safety requirements.

  • PDF

인공 신경망을 이용한 공정고장 진단방법 (A fault diagnosis method using an artificial neural network)

  • 이상규;박선원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.339-343
    • /
    • 1990
  • This paper describes a neural-network-based methodology for providing a potential solution in the area of process fault diagnosis. The existing neural network for fault diagnosis learn fault node by using pairs of single-symptom-single-cause only. But in real plants, the effect of a fault propagates continuously from it's origin; different sensor values reflect this. In this paper, we suggest a new method which can handle the effect of symptom propagation. The proposed method can find the exact origin of the fault of which the symptom is propagated continuously with time.

  • PDF

신경회로망과 DWT를 이용한 고장표시기의 고장검출 개선에 관한 연구 (A Study for the Improvement of Fault Detection on Fault Indicator using DWT and Neural Network)

  • 홍대승;임화영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.46-48
    • /
    • 2007
  • This paper presents research about improvement of fault detection algorithm in FRTU on the feeder of distribution system. FRTU(Feeder Remote Terminal Unit) is applied to fault detection schemes for phase fault, ground fault, and cold load pickup and Inrush restraint functions distinguish the fault current and the normal load current. FRTU is occurred FI(Fault Indicator) when current is over pick-up value also inrush current is occurred FRTU indicate FI. Discrete wavelet transform(DWT) analysis gives the frequency and time-scale information. The neural network system as a fault detector was trained to discriminate inrush current from the fault status by a gradient descent method. In this paper, fault detection is improved using voltage monitoring system with DWT and neural network. These data were measured in actual 22.9kV distribution system.

  • PDF

전력계통 사고구간 판정을 위한 Commectionist Expert System (A Connectionist Expert System for Fault Diagnosis of Power System)

  • 김광호;박종근
    • 대한전기학회논문지
    • /
    • 제41권4호
    • /
    • pp.331-338
    • /
    • 1992
  • The application of Connectionist expert system using neural network to fault diagnosis of power system is presented and compared with rule-based expert system. Also, the merits of Connectionist model using neural network is presented. In this paper, the neural network for fault diagnosis is hierarchically composed by 3 neural network classes. The whole power system is divided into subsystems, the neural networks (Class II) which take charge of each subsystem and the neural network (Class III) which connects subsystems are composed. Every section of power system is classified into one of the typical sections which can be applied with same diagnosis rules, as line-section, bus-section, transformer-section. For each typical section, only one neural network (Class I) is composed. As the proposed model has hierarchical structure, the great reduction of learning structure is achieved. With parallel distributed processing, we show the possibility of on-line fault diagnosis.

  • PDF

ATM 교환을 위한 비용 효율적인 동적 결함내성 bitonic sorting network (A Cost-Effective Dynamic Redundant Bitonic Sorting Network for ATM Switching)

  • 이재동;김재홍;최홍인
    • 한국정보처리학회논문지
    • /
    • 제7권4호
    • /
    • pp.1073-1081
    • /
    • 2000
  • This paper proposes a new fault-tolerant technique for bitonic sorting networks which can be used for designing ATM switches based on Batcher-Banyan network. The main goal in this paper is to design a cost-effective fault-tolerant bitonic sorting network. In order to recover a fault, additional comparison elements and additional links are used. A Dynamic Redundant Bitonic Sorting (DRBS) network is based on the Dynamic Redundant network and can be constructed with several different variations. The proposed fault-tolerant sorting network offers high fault-tolerance; low time delays; maintenance of cell sequence; simple routing; and regularity and modularity.

  • PDF

신경회로망 기반 고장 진단 시스템을 위한 고장 신호별 특징 벡터 결정 방법 (Feature Vector Decision Method of Various Fault Signals for Neural-network-based Fault Diagnosis System)

  • 한형섭;조상진;정의필
    • 한국소음진동공학회논문집
    • /
    • 제20권11호
    • /
    • pp.1009-1017
    • /
    • 2010
  • As rotating machines play an important role in industrial applications such as aeronautical, naval and automotive industries, many researchers have developed various condition monitoring system and fault diagnosis system by applying various techniques such as signal processing and pattern recognition. Recently, fault diagnosis systems using artificial neural network have been proposed. For effective fault diagnosis, this paper used MLP(multi-layer perceptron) network which is widely used in pattern classification. Since using obtained signals without preprocessing as inputs of neural network can decrease performance of fault classification, it is very important to extract significant features of captured signals and to apply suitable features into diagnosis system according to the kinds of obtained signals. Therefore, this paper proposes the decision method of the proper feature vectors about each fault signal for neural-network-based fault diagnosis system. We applied LPC coefficients, maximum magnitudes of each spectral section in FFT and RMS(root mean square) and variance of wavelet coefficients as feature vectors and selected appropriate feature vectors as comparing error ratios of fault diagnosis for sound, vibration and current fault signals. From experiment results, LPC coefficients and maximum magnitudes of each spectral section showed 100 % diagnosis ratios for each fault and the method using wavelet coefficients had noise-robust characteristic.