• Title/Summary/Keyword: Network Design Problem

Search Result 1,171, Processing Time 0.026 seconds

A Railway Network Design Problem Considering Passengers Route Choice (철도승객의 노선선택을 고려한 철도망 설계모형 연구)

  • Lim, Yong-Tae k;Jang, Jun-Seok;Park, Jin-Kyung;Lee, Jun
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.6
    • /
    • pp.581-587
    • /
    • 2008
  • This paper presents a railway network design problem (RNDP), which can be formulated as a bi-level program. In bi-level program upper level program is to minimize total travel cost including the construction cost of the railway facilities, whilst lower one describes the railway route choice behavior of passengers. We also propose a heuristic method for solving the program because it is a kind of NP-hard problem. From two numerical railway examples, we confirm that the RNDP and its algorithm produce a reasonable solution and that it is applicable to real world.

A Splitter Location-Allocation Problem in Designing FTTH-PON Access Networks (FTTH-PON 가입자망 설계에서 Splitter Location-Allocation 문제)

  • Park, Chan-Woo;Lee, Young-Ho;Han, Jung-Hee
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.36 no.2
    • /
    • pp.1-14
    • /
    • 2011
  • In this paper, we deal with an access network design problem of fiber-to-the-home passive optical network (FTTH-PON). The FTTH-PON network design problem seeks to minimize the total cost of optical splitters and cables that provide optical connectivity between central office and subscribers. We develop a flow-based mixed integer programming (MIP) model with nonlinear link cost. By developing valid inequalities and preprocessing rules, we enhance the strength of the proposed MIP model in generating tight lower bounds for the problem. We develop an effective Tabu Search (TS) heuristic algorithm that provides good quality feasible solutions to the problem. Computational results demonstrate that the valid inequalities and preprocessing rules are effective for improving the LP-relaxation lower bound and TS algorithm finds good quality solutions within reasonable time bounds.

B-DCS Fiber-Optic Network Design Algorithm Considering Network Survivability (생존도가 보장된 B-DCS 광전송망 설계 알고리즘)

  • 이인행;이영옥;정순기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12A
    • /
    • pp.1899-1909
    • /
    • 1999
  • Considering survivability in fiber-optic transmission networks using B-DCS(Broadband Digital Cross-connect System), a network design problem consists of WCAP(Working Channel Assignment Problem) and SCAP(Spare Channel Assignment Problem). WCAP has not been studied intensively as a part of a network design problem to minimize total network cost while SCAP has been studied in the several papers as an independent problem. In this study, we developed a WSCAP(Working and Spare Channel Assignment Problem) algorithm which is to minimize the total number of spare channels and working channels. After problem description, an IP(Integer Programming) model is formulated and several heuristic algorithms are presented. Finally, the result of a case study is described.

  • PDF

A New Optimization System for Designing Broadband Convergence Network Access Networks (Broadband Convergence Network 가입자 망 설계 시스템 연구)

  • Lee, Young-Ho;Jung, Jin-Mo;Kim, Young-Jin;Lee, Sun-Suk;Park, No-Ik;kang, Kuk-Chang
    • Korean Management Science Review
    • /
    • v.23 no.2
    • /
    • pp.161-174
    • /
    • 2006
  • In this paper, we consider a network optimization problem arising from the deployment of BcN access network. BcN convergence services requires that access networks satisfy QoS meausres. BcN services have two types of traffics : stream traffic and elastic traffic. Stream traffic uses blocking probability as a QoS measure, while elastic traffic uses delay factor as a QoS measure. Incorporating the QoS requirements, we formulate the problem as a nonlinear mixed-integer Programming model. The Proposed model seeks to find a minimum cost dimensioning solution, while satisfying the QoS requirement. We propose two local search heuristic algorithms for solving the problem, and develop a network design system that implements the developed heuristic algorithms. We demonstrate the computational efficacy of the proposed algorithm by solving a realistic network design problem.

GA-based Two Phase Method for a Highly Reliable Network Design (높은 신뢰도의 네트워크 설계를 위한 GA 기반 두 단계 방법)

  • Jo, Jung-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.1149-1160
    • /
    • 2005
  • Generally, the network topology design problem, which is difficult to solve with the classical method because it has exponentially increasing complexity with the augmented network size, is characterized as a kind of NP-hard combinatorial optimization problem. The problem of this research is to design the highly reliable network topology considering the connection cost and all-terminal network reliability, which can be defined as the probability that every pair of nodes can communicate with each other. In order to solve the highly reliable network topology design problem minimizing the construction cost subject to network reliability, we proposes an efficient two phase approach to design reliable network topology, i.e., the first phase employs, a genetic algorithm (GA) which uses $Pr\ddot{u}fer$ number for encoding method and backtracking Algorithm for network reliability calculation, to find the spanning tree; the second phase is a greedy method which searches the optimal network topology based on the spanning ree obtained in the first phase, with considering 2-connectivity. finally, we show some experiments to demonstrate the effectiveness and efficiency of our two phase approach.

Generating Mechanisms of Initial and Candidate Solutions in Simulated Annealing for Packet Communication Network Design Problems (패킷 통신 네트워크 설계를 위한 시뮬레이티드 애닐링 방법에서 초기해와 후보해 생성방법)

  • Yim Dong-Soon;Woo Hoon-Shik
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.29 no.3
    • /
    • pp.145-155
    • /
    • 2004
  • The design of a communication network has long been a challenging optimization problem. Since the optimal design of a network topology is a well known as a NP-complete problem, many researches have been conducted to obtain near optimal solutions in polynomial time instead of exact optimal solutions. All of these researches suggested diverse heuristic algorithms that can be applied to network design problems. Among these algorithms, a simulated annealing algorithm has been proved to guarantee a good solution for many NP-complete problems. in applying the simulated annealing algorithms to network design problems, generating mechanisms for initial solutions and candidate solutions play an important role in terms of goodness of a solution and efficiency. This study aims at analyzing these mechanisms through experiments, and then suggesting reliable mechanisms.

Economic Design of Tree Network Using Tabu List Coupled Genetic Algorithms (타부 리스트가 결합된 유전자 알고리즘을 이용한 트리형 네트워크의 경제적 설계)

  • Lee, Seong-Hwan;Lee, Han-Jin;Yum, Chang-Sun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.1
    • /
    • pp.10-15
    • /
    • 2012
  • This paper considers an economic design problem of a tree-based network which is a kind of computer network. This problem can be modeling to be an objective function to minimize installation costs, on the constraints of spanning tree and maximum traffic capacity of sub tree. This problem is known to be NP-hard. To efficiently solve the problem, a tabu list coupled genetic algorithm approach is proposed. Two illustrative examples are used to explain and test the proposed approach. Experimental results show evidence that the proposed approach performs more efficiently for finding a good solution or near optimal solution in comparison with a genetic algorithm approach.

A Genetic Algorithm Approach for the Design of Minimum Cost Survivable Networks with Bounded Rings

  • B. Ombuki;M. Nakamura;Na, Z.kao;K.Onage
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.493-496
    • /
    • 2000
  • We study the problem of designing at minimum cost a two-connected network topology such that the shortest cycle to which each edge belongs does not exceed a given maximum number of hops. This problem is considered as part of network planning and arises in the design of backbone networks. We propose a genetic algorithm approach that uses a solution representation, in which the connectivity and ring constraints can be easily encoded. We also propose a crossover operator that ensures a generated solution is feasible. By doing so, the checking of constraints is avoided and no repair mechanism is required. We carry out experimental evaluations to investigate the solution representation issues and GA operators for the network design problem.

  • PDF

A Cooperative Coevolutionary Algorithm for Optimizing a Reverse Logistics Network Model (역물류 네트워크 모델의 최적화를 위한 협력적 공진화 알고리즘)

  • Han, Yong-Ho
    • Korean Management Science Review
    • /
    • v.27 no.3
    • /
    • pp.15-31
    • /
    • 2010
  • We consider a reverse logistics network design problem for recycling. The problem consists of three stages of transportation. In the first stage products are transported from retrieval centers to disassembly centers. In the second stage disassembled modules are transported from disassembly centers to processing centers. Finally, in the third stage modules are transported from either processing centers or a supplier to a manufacturer, a recycling site, or a disposal site. The objective is to design a network which minimizes the total transportation cost. We design a cooperative coevolutionary algorithm to solve the problem. First, the problem is decomposed into three subproblems each of which corresponds to a stage of transportation. For subproblems 1 and 2, a population of chromosomes is constructed. Each chromosome in the population is coded as a permutation of integers and an algorithm which decodes a chromosome is suggested. For subproblem 3, an heuristic algorithm is utilized. Then, a performance evaluation procedure is suggested which combines the chromosomes from each of two populations and the heuristic algorithm for subproblem 3. An experiment was carried out using test problems. The experiments showed that the cooperative coevolutionary algorithm generally tends to show better performances than the previous genetic algorithm as the problem size gets larger.

Budget Estimation Problem for Capacity Enhancement based on Various Performance Criteria (다중 평가지표에 기반한 도로용량 증대 소요예산 추정)

  • Kim, Ju-Young;Lee, Sang-Min;Cho, Chong-Suk
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.5
    • /
    • pp.175-184
    • /
    • 2008
  • Uncertainties are unavoidable in engineering applications. In this paper we propose an alpha reliable multi-variable network design problem under demand uncertainty. In order to decide the optimal capacity enhancement, three performance measures based on 3E(Efficiency, Equity, and Environmental) are considered. The objective is to minimize the total budget required to satisfy alpha reliability constraint of total travel time, equity ratio, and total emission, while considering the route choice behavior of network users. The problem is formulated as the chance-constrained model for application of alpha confidence level and solved as a lexicographic optimization problem to consider the multi-variable. A simulation-based genetic algorithm procedure is developed to solve this complex network design problem(NDP). A simple numerical example ispresented to illustrate the features of the proposed NDP model.