• 제목/요약/키워드: Network Data Set

검색결과 1,383건 처리시간 0.031초

Application of Neural Networks For Estimating Evapotranspiration

  • Lee, Nam-Ho
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.1273-1281
    • /
    • 1993
  • Estimation of daily and seasonal evaportranspiration is essential for water resource planning irrigation feasibility study, and real-time irrigation water management . This paper is to evaluate the applicability of neural networks to the estimation of evapotranspiration . A neural network was developed to forecast daily evapotranspiration of the rice crop. It is a three-layer network with input, hidden , and output layers. Back-propagation algorithm with delta learning rule was used to train the neural network. Training neural network wasconducted usign daily actural evapotranspiration of rice crop and daily climatic data such as mean temperature, sunshine hours, solar radiation, relative humidity , and pan evaporation . During the training, neural network parameters were calibrated. The trained network was applied to a set of field data not used in the training . The created response of the neural network was in good agreement with desired values. Evaluating the neural networ performance indicates that neural network may be applied to the estimation of evapotranspiration of the rice crop.

  • PDF

Extending Network Domain for IEEE1394

  • Lee, Seong-Hee;Park, Seong-Hee;Choi, Sang-Sung
    • 한국정보기술응용학회:학술대회논문집
    • /
    • 한국정보기술응용학회 2005년도 6th 2005 International Conference on Computers, Communications and System
    • /
    • pp.177-178
    • /
    • 2005
  • Wireless 1394 over IEEE802.15.3 must allow a data reserved for delivery over a wired 1394 network to be delivered over an IEEE802.15.3 wireless network through bridging IEEE 1394 to IEEE802.15.3. Isochronous transfers on the 1394 bus guarantee timely delivery of data. Specifically, isochronous transfers are scheduled by the bus so that they occur once every $125\;{\mu}s$ and require clock time synchronization to complete the real-time data transfer. IEEE1394.1 and Protocol Adaptation Layer for IEEE1394 over IEEE802.15.3 specify clock time synchronization for a wired 1394 bus network to a wired 1394 bus network and wireless 1394 nodes, which are IEEE802.15.3 nodes handling 1394 applications, over IEEE802.15.3. Thus, the clock time synchronizations are just defined within a homogeneous network environment like IEEE1394 or IEEE802.15.3 until now. This paper proposes new clock time synchronization method for wireless 1394 heterogeneous networks between 1394 and 802.15.3. If new method is adopted for various wireless 1394 products, consumer electronics devices such as DTV and Set-top Box or PC devices on a 1394 bus network can transmit real time data to the AV devices on the other 1394 bus in a different place via IEEE 802.15.3.

  • PDF

Bayesian Neural Network with Recurrent Architecture for Time Series Prediction

  • Hong, Chan-Young;Park, Jung-Hun;Yoon, Tae-Sung;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.631-634
    • /
    • 2004
  • In this paper, the Bayesian recurrent neural network (BRNN) is proposed to predict time series data. Among the various traditional prediction methodologies, a neural network method is considered to be more effective in case of non-linear and non-stationary time series data. A neural network predictor requests proper learning strategy to adjust the network weights, and one need to prepare for non-linear and non-stationary evolution of network weights. The Bayesian neural network in this paper estimates not the single set of weights but the probability distributions of weights. In other words, we sets the weight vector as a state vector of state space method, and estimates its probability distributions in accordance with the Bayesian inference. This approach makes it possible to obtain more exact estimation of the weights. Moreover, in the aspect of network architecture, it is known that the recurrent feedback structure is superior to the feedforward structure for the problem of time series prediction. Therefore, the recurrent network with Bayesian inference, what we call BRNN, is expected to show higher performance than the normal neural network. To verify the performance of the proposed method, the time series data are numerically generated and a neural network predictor is applied on it. As a result, BRNN is proved to show better prediction result than common feedforward Bayesian neural network.

  • PDF

Design, Deployment and Implementation of Local Area Network (LAN) at BAEC Head Quarter

  • Osman Goni;Md. Abu Shameem
    • International Journal of Computer Science & Network Security
    • /
    • 제24권4호
    • /
    • pp.141-146
    • /
    • 2024
  • A local area network (LAN) is a computer network within a small geographical area such as a home, school, computer laboratory, office building or group of buildings. A LAN is composed of interconnected workstations and personal computers which are each capable of accessing and sharing data and devices, such as printers, scanners and data storage devices, anywhere on the LAN. LANs are characterized by higher communication and data transfer rates and the lack of any need for leased communication lines. Communication between remote parties can be achieved through a process called Networking, involving the connection of computers, media and networking devices. When we talk about networks, we need to keep in mind three concepts, distributed processing, network criteria and network structure. The purpose of this Network is to design a Local Area Network (LAN) for a BAEC (Bangladesh Atomic Energy Commission) Head Quarter and implement security measures to protect network resources and system services. To do so, we will deal with the physical and logical design of a LAN. The goal of this Network is to examine of the Local Area Network set up for a BAEC HQ and build a secure LAN system.

집합 결합과 신경망을 이용한 복합질환의 예측 (A Prediction Model for Complex Diseases using Set Association & Artificial Neural Network)

  • 최현주;김승현;위규범
    • 정보처리학회논문지B
    • /
    • 제15B권4호
    • /
    • pp.323-330
    • /
    • 2008
  • 복합질환은 다수의 유전자들이 상호작용하여 유발되는 질병으로서, 여러 유전자들이 관여한다는 복잡성 때문에 전통적인 분석 방법을 적용하는데 한계가 있다. 최근에는 기계학습 기법을 이용한 새로운 분석 방법들이 제안되고 있다. 신경망은 이처럼 복잡한 데이터에서 일정한 패턴을 찾아 이를 분류하는데 적합한 모델이다. 그러나 다량의 데이터가 입력으로 들어오는 경우에 학습에 오랜 시간이 걸리고 패턴을 찾기가 어려워지는 단점이 있다. 본 연구에서는 다량의 SNP 데이터로부터 질병에 연관된 소수의 중요 SNP을 찾기 위한 통계학적인 방법인 집합결합(set association)과 신경망을 결합한 모델을 제시한다. 이 모델을 천식 관련 SNP 데이터에 적용하여 천식 발병 여부를 예측한 결과, 신경망만 사용했을 때보다 실행 시간도 빠르고 예측 정확도도 높았다. 이 모델은 다른 복합질환의 예측에도 효과적으로 사용할 수 있을 것으로 기대한다.

난수발생기와 일반화된 회귀 신경망을 이용한 DNA 서열 분류 (DNA Sequence Classification Using a Generalized Regression Neural Network and Random Generator)

  • 김성모;김근호;김병환
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권7호
    • /
    • pp.525-530
    • /
    • 2004
  • A classifier was constructed by using a generalized regression neural network (GRU) and random generator (RG), which was applied to classify DNA sequences. Three data sets evaluated are eukaryotic and prokaryotic sequences (Data-I), eukaryotic sequences (Data-II), and prokaryotic sequences (Data-III). For each data set, the classifier performance was examined in terms of the total classification sensitivity (TCS), individual classification sensitivity (ICS), total prediction accuracy (TPA), and individual prediction accuracy (IPA). For a given spread, the RG played a role of generating a number of sets of spreads for gaussian functions in the pattern layer Compared to the GRNN, the RG-GRNN significantly improved the TCS by more than 50%, 60%, and 40% for Data-I, Data-II, and Data-III, respectively. The RG-GRNN also demonstrated improved TPA for all data types. In conclusion, the proposed RG-GRNN can effectively be used to classify a large, multivariable promoter sequences.

ABRN:주문형 멀티미디어 데이터 베이스 서비스 시스템을 위한 버퍼 교체 알고리즘 (ABRN:An Adaptive Buffer Replacement for On-Demand Multimedia Database Service Systems)

  • 정광철;박웅규
    • 한국정보처리학회논문지
    • /
    • 제3권7호
    • /
    • pp.1669-1679
    • /
    • 1996
  • In this paper, we address the problem of how to replace huffers in multimedia database systems with time-varying skewed data access. The access pattern in the multimedia database system to support audio-on-demand and video-on-demand services is generally skewed with a few popular objects. In addition the access pattem of the skewed objects has a time-varying property. In such situations, our analysis indicates that conventional LRU(least Recently Used) and LFU(Least Frequently Used) schemes for buffer replacement algorithm(ABRN:Adaptive Buffer Replacement using Neural suited. We propose a new buffer replacement algorithm(ABRN:Adaptive Buffer Replacement using Neural Networks)using a neural network for multimedia database systems with time-varying skewed data access. The major role of our neural network classifies multimedia objects into two classes:a hot set frequently accessed with great popularity and a cold set randomly accessed with low populsrity. For the classification, the inter-arrival time values of sample objects are employed to train the neural network.Our algorithm partitions buffers into two regions to combine the best roperties of LRU and LFU.One region, which contains the 핫셋 objects, is managed by LFU replacement and the other region , which contains the cold set objects , is managed by LRUreplacement.We performed simulation experiments in an actual environment with time-varying skewed data accsee to compare our algorithm to LRU, LFU, and LRU-k which is a variation of LRU. Simulation resuults indicate that our proposed algorthm provides better performance as compared to the other algorithms. Good performance of the neural network-based replacement scheme means that this new approach can be also suited as an alternative to the existing page replacement and prefetching algorithms in virtual memory systems.

  • PDF

다시점 영상 집합을 활용한 선체 블록 분류를 위한 CNN 모델 성능 비교 연구 (Comparison Study of the Performance of CNN Models with Multi-view Image Set on the Classification of Ship Hull Blocks)

  • 전해명;노재규
    • 대한조선학회논문집
    • /
    • 제57권3호
    • /
    • pp.140-151
    • /
    • 2020
  • It is important to identify the location of ship hull blocks with exact block identification number when scheduling the shipbuilding process. The wrong information on the location and identification number of some hull block can cause low productivity by spending time to find where the exact hull block is. In order to solve this problem, it is necessary to equip the system to track the location of the blocks and to identify the identification numbers of the blocks automatically. There were a lot of researches of location tracking system for the hull blocks on the stockyard. However there has been no research to identify the hull blocks on the stockyard. This study compares the performance of 5 Convolutional Neural Network (CNN) models with multi-view image set on the classification of the hull blocks to identify the blocks on the stockyard. The CNN models are open algorithms of ImageNet Large-Scale Visual Recognition Competition (ILSVRC). Four scaled hull block models are used to acquire the images of ship hull blocks. Learning and transfer learning of the CNN models with original training data and augmented data of the original training data were done. 20 tests and predictions in consideration of five CNN models and four cases of training conditions are performed. In order to compare the classification performance of the CNN models, accuracy and average F1-Score from confusion matrix are adopted as the performance measures. As a result of the comparison, Resnet-152v2 model shows the highest accuracy and average F1-Score with full block prediction image set and with cropped block prediction image set.

The solution of single-variable minimization using neural network

  • 손준혁;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2528-2530
    • /
    • 2004
  • Neural network minimization problems are often conditioned and in this contribution way to handle this will be discussed. It is shown that a better conditioned minimization problem can be obtained if the problem is separated with respect to the linear parameters. This will increase the convergence speed of the minimization. One of the most powerful uses of neural networks is in function approximation(curve fitting)[1]. A main characteristic of this solution is that function (f) to be approximated is given not explicitly but implicitly through a set of input-output pairs, named as training set, that can be easily obtained from calibration data of the measurement system. In this context, the usage of Neural Network(NN) techniques for modeling the systems behavior can provide lower interpolation errors when compared with classical methods like polynomial interpolation. This paper solve of single-variable minimization using neural network.

  • PDF

The Impact of Network Coding Cluster Size on Approximate Decoding Performance

  • Kwon, Minhae;Park, Hyunggon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.1144-1158
    • /
    • 2016
  • In this paper, delay-constrained data transmission is considered over error-prone networks. Network coding is deployed for efficient information exchange, and an approximate decoding approach is deployed to overcome potential all-or-nothing problems. Our focus is on determining the cluster size and its impact on approximate decoding performance. Decoding performance is quantified, and we show that performance is determined only by the number of packets. Moreover, the fundamental tradeoff between approximate decoding performance and data transfer rate improvement is analyzed; as the cluster size increases, the data transfer rate improves and decoding performance is degraded. This tradeoff can lead to an optimal cluster size of network coding-based networks that achieves the target decoding performance of applications. A set of experiment results confirms the analysis.