International Journal of Computer Science & Network Security
/
제23권2호
/
pp.133-139
/
2023
As the old saying goes "a picture is worth a thousand words" data visualization is essential in almost every industry. Companies make Data-driven decisions and gain insights from visual data. However, there is a need to investigate the role of data visualization in human resource management. This review aims to highlight the power of data visualization in the field of human resources. In addition, visualize the latest trends in the research area of human resource and data visualization by conducting a quantitative method for analysis. The study adopted a literature review on recent publications from 2017 to 2022 to address research questions.
This study aimed to analyze the needs and interests of the public on endangered wildlife using complaint big data. We collected 1,203 complaints and their corresponding text data on endangered wildlife, pre-processed them, and constructed a document-term matrix for 1,739 text data. We performed LDA (Latent Dirichlet Allocation) topic modeling and network analysis. The results revealed that the complaints on endangered wildlife peaked in June-August, and the interest shifted from insects to various endangered wildlife in the living area, such as mammals, birds, and amphibians. In addition, the complaints on endangered wildlife could be categorized into 8 topics and 5 clusters, such as discovery report, habitat protection and response request, information inquiry, investigation and action request, and consultation request. The co-occurrence network analysis for each topic showed that the keywords reflecting the call center reporting procedure, such as photo, send, and take, had high centrality in common, and other keywords such as dung beetle, know, absence and think played an important role in the network. Through this analysis, we identified the main keywords and their relationships within each topic and derived the main issues for each topic. This study confirmed the increasing and diversifying public interest and complaints on endangered wildlife and highlighted the need for professional response. We also suggested developing and extending participatory conservation plans that align with the public's preferences and demands. This study demonstrated the feasibility of using complaint big data on endangered wildlife and its implications for policy decision-making and public promotion on endangered wildlife.
본 연구는 경기지역의 상호대차데이터를 분석하여 상호대차 장서의 지역 간 네트워크를 분석하여 보고자 하였다. 경기지역 공공도서관의 지역 간 상호대차 장서의 네트워크를 분석하여 장서의 이동이 어떻게 이루어지는가 파악함으로써 실무기반 데이터의 활용 방안을 모색해보았다. 이를 통하여 효율적 상호대차를 위하여 지역을 권역별로 나누어 상호대차를 실시한다면 더욱 원할한 상호대차가 이루어질 수 있음을 확인하였다.
Razavi, S.V.;Jumaat, Mohad Zamin;El-Shafie, Ahmed H.;Ronagh, Hamid Reza
Advances in concrete construction
/
제3권2호
/
pp.91-102
/
2015
In this paper, the load-deflection analysis of the Carbon Fiber Reinforced Polymer (CFRP) strengthened Reinforced Concrete (RC) slab using Recurrent Neural Network (RNN) is investigated. Six reinforced concrete slabs having dimension $1800{\times}400{\times}120mm$ with similar steel bar of 2T10 and strengthened using different length and width of CFRP were tested and compared with similar samples without CFRP. The experimental load-deflection results were normalized and then uploaded in MATLAB software. Loading, CFRP length and width were as neurons in input layer and mid-span deflection was as neuron in output layer. The network was generated using feed-forward network and a internal nonlinear condition space model to memorize the input data while training process. From 122 load-deflection data, 111 data utilized for network generation and 11 data for the network testing. The results of model on the testing stage showed that the generated RNN predicted the load-deflection analysis of the slabs in acceptable technique with a correlation of determination of 0.99. The ratio between predicted deflection by RNN and experimental output was in the range of 0.99 to 1.11.
본 논문은 빅데이터 분석 교육의 문제점을 고찰해 그 개선 방안을 제시한다. 빅데이터의 특성은 V3에서 V5로 진화하고 있다. 이에 빅데이터 분석 교육도 V5를 감안한 데이터 분석 교육이 되어야 한다. 작금 불확실성의 증대는 데이터 분석의 리스크를 증가시키기에 내적 외적 구조화/비구조화 데이터를 비롯해 교란 요인마저 분석할 때 데이터의 신뢰성은 증가될 수 있다. 그리고 평판분석을 활용할 때 범하기 쉬운 오류가 가변성과 불확실성에 대한 상황 인식이다. 가변성의 측면을 고려해, 다양한 변수와 옵션에 의한 불확실성의 상황을 인식하고 대비한 데이터 분석이 이뤄질 때 데이터에 대한 신뢰성과 정확성은 증가할 수 있다. 사회관계망 분석에서 학생들과 일반 연구자들이 주로 활용하는 것이 텍스톰과 노드엑셀의 노드 분석이다. 사화관계망 분석은 매개중심성에 의한 상황 분석을 통해 다크 데이터를 찾아 이상 현상을 감지하고 현 상황을 분석하여 유용한 의미를 얻고 미래를 예측할 수 있어야 한다.
International journal of advanced smart convergence
/
제12권1호
/
pp.164-172
/
2023
In this study, we identify the recognition of 'The First Slam Dunk', which is gaining popularity as a sports-based cartoon through big data analysis of social media channels, and provide basic data for the development and development of various contents in the sports industry. Social media channels collected detailed social big data from news provided on Naver and Google sites. Data were collected from January 1, 2023 to February 15, 2023, referring to the release date of 'The First Slam Dunk' in Korea. The collected data were 2,106 Naver news data, and 1,019 Google news data were collected. TF and TF-IDF were analyzed through text mining for these data. Through this, semantic network analysis was conducted for 60 keywords. Big data analysis programs such as Textom and UCINET were used for social big data analysis, and NetDraw was used for visualization. As a result of the study, the keyword with the high frequency in relation to the subject in consideration of TF and TF-IDF appeared 4,079 times as 'The First Slam Dunk' was the keyword with the high frequency among the frequent keywords. Next are 'Slam Dunk', 'Movie', 'Premiere', 'Animation', 'Audience', and 'Box-Office'. Based on these results, 60 high-frequency appearing keywords were extracted. After that, semantic metrics and centrality analysis were conducted. Finally, a total of 6 clusters(competing movie, cartoon, passion, premiere, attention, Box-Office) were formed through CONCOR analysis. Based on this analysis of the semantic network of 'The First Slam Dunk', basic data on the development plan of sports content were provided.
Recently, online commerces are becoming more common due to factors such as mobile technology development and smart device dissemination, and online review has a big influence on potential buyer's purchase decision. This study presents a set of analytical methodologies for understanding the meaning of customer reviews of products in online transaction. Using techniques currently developed in deep learning are implemented Hierarchical Attention Network for analyze meaning in online reviews. By using these techniques, we could solve time consuming pre-data analysis time problem and multiple topic problems. To this end, this study analyzes customer reviews of laptops sold in domestic online shopping malls. Our result successfully demonstrates over 90% classification accuracy. Therefore, this study classified the unstructured text data in the semantic analysis and confirmed the practical application possibility of the review analysis process.
In this study, Big Data was used to collect the information related to 'Cooking Academy' keywords. After collecting all the data, we calculated the frequency through the text mining and selected the main words for future data analysis. Data collection was conducted from Google Web and News during the period from January 1, 2013 to December 31, 2017. The selected 64 words were analyzed by using UCINET 6.0 program, and the analysis results were visualized with NetDraw in order to present the relationship of main words. As a result, it was found that the most important goal for the students from cooking school is to work as a cook, likewise to have practical classes. In addition, we obtained the result that SNS marketing system that the social sites, such as Facebook, Twitter, and Instagram are actively utilized as a marketing strategy of the institute. Therefore, the results can be helpful in searching for the method of utilizing big data and can bring brand-new ideas for the follow-up studies. In practical terms, it will be remarkable material about the future marketing directions and various programs that are improved by the detailed curriculums through semantic network of cooking school by using big data.
This study seeks a method to objectively evaluate sensibility based on Big Data in the field of design. In order to do so, this study examined the sensibility responses on design factors for the public through a network analysis of texts displayed in social media. 'Hanbok', a formal clothing that represents Korea, was selected as the subject for the research methodology. We then collected 47,677 keywords related to Hanbok from 12,000 posts on Naver blogs from January $1^{st}$ to December $31^{st}$ 2015 and that analyzed using social matrix (a Big Data analysis software) rather than using previous survey methods. We also derived 56 key-words related to design elements and sensibility responses of Hanbok. Centrality analysis and CONCOR analysis were conducted using Ucinet6. The visualization of the network text analysis allowed the categorization of the main design factors of Hanbok with evaluation terms that mean positive, negative, and neutral sensibility responses. We also derived key evaluation factors for Hanbok as fitting, rationality, trend, and uniqueness. The evaluation terms extracted based on natural language processing technologies of atypical data have validity as a scale for evaluation and are expected to be suitable for utilization in an index for sensibility evaluation that supplements the limits of previous surveys and statistical analysis methods. The network text analysis method used in this study provides new guidelines for the use of Big Data involving sensibility evaluation methods in the field of design.
Tissue microarry is one of the high throughput technologies in the post-genomic era. Using tissue microarray, the researchers are able to investigate large amount of gene expressions at the level of DNA, RNA, and protein The important aspect of tissue microarry is its ability to assess a lot of biomarkers which have been used in clinical practice. To manipulate the categorical data of tissue microarray, we applied Bayesian network classifier algorithm. We identified that Bayesian network classifier algorithm could analyze tissue microarray data and integrating prior knowledge about gastric cancer could achieve better performance result. The results showed that relevant integration of prior knowledge promote the prediction accuracy of survival status of the immunohistochemical tissue microarray data of 18 tumor suppressor genes. In conclusion, the application of Bayesian network classifier seemed appropriate for the analysis of the tissue microarray data with clinical information.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.