• 제목/요약/키워드: Network Data Analysis

검색결과 5,971건 처리시간 0.029초

A Quantitative Approach for Data Visualization in Human Resource Management

  • Bandar Abdullah AlMobark
    • International Journal of Computer Science & Network Security
    • /
    • 제23권2호
    • /
    • pp.133-139
    • /
    • 2023
  • As the old saying goes "a picture is worth a thousand words" data visualization is essential in almost every industry. Companies make Data-driven decisions and gain insights from visual data. However, there is a need to investigate the role of data visualization in human resource management. This review aims to highlight the power of data visualization in the field of human resources. In addition, visualize the latest trends in the research area of human resource and data visualization by conducting a quantitative method for analysis. The study adopted a literature review on recent publications from 2017 to 2022 to address research questions.

멸종위기 야생생물 민원 텍스트 마이닝 연구 - LDA 토픽 모델링과 네트워크 분석을 통한 주요 이슈 발굴 - (A Text Mining Study on Endangered Wildlife Complaints - Discovery of Key Issues through LDA Topic Modeling and Network Analysis -)

  • 김나영;남희정;박용수
    • 한국환경복원기술학회지
    • /
    • 제26권6호
    • /
    • pp.205-220
    • /
    • 2023
  • This study aimed to analyze the needs and interests of the public on endangered wildlife using complaint big data. We collected 1,203 complaints and their corresponding text data on endangered wildlife, pre-processed them, and constructed a document-term matrix for 1,739 text data. We performed LDA (Latent Dirichlet Allocation) topic modeling and network analysis. The results revealed that the complaints on endangered wildlife peaked in June-August, and the interest shifted from insects to various endangered wildlife in the living area, such as mammals, birds, and amphibians. In addition, the complaints on endangered wildlife could be categorized into 8 topics and 5 clusters, such as discovery report, habitat protection and response request, information inquiry, investigation and action request, and consultation request. The co-occurrence network analysis for each topic showed that the keywords reflecting the call center reporting procedure, such as photo, send, and take, had high centrality in common, and other keywords such as dung beetle, know, absence and think played an important role in the network. Through this analysis, we identified the main keywords and their relationships within each topic and derived the main issues for each topic. This study confirmed the increasing and diversifying public interest and complaints on endangered wildlife and highlighted the need for professional response. We also suggested developing and extending participatory conservation plans that align with the public's preferences and demands. This study demonstrated the feasibility of using complaint big data on endangered wildlife and its implications for policy decision-making and public promotion on endangered wildlife.

경기도 공공도서관 상호대차 네트워크 분석 (An Analysis on Interlibrary Loan Network of Public Libraries in Gyeonggi Province)

  • 유종덕
    • 정보관리학회지
    • /
    • 제30권2호
    • /
    • pp.83-99
    • /
    • 2013
  • 본 연구는 경기지역의 상호대차데이터를 분석하여 상호대차 장서의 지역 간 네트워크를 분석하여 보고자 하였다. 경기지역 공공도서관의 지역 간 상호대차 장서의 네트워크를 분석하여 장서의 이동이 어떻게 이루어지는가 파악함으로써 실무기반 데이터의 활용 방안을 모색해보았다. 이를 통하여 효율적 상호대차를 위하여 지역을 권역별로 나누어 상호대차를 실시한다면 더욱 원할한 상호대차가 이루어질 수 있음을 확인하였다.

Load-deflection analysis prediction of CFRP strengthened RC slab using RNN

  • Razavi, S.V.;Jumaat, Mohad Zamin;El-Shafie, Ahmed H.;Ronagh, Hamid Reza
    • Advances in concrete construction
    • /
    • 제3권2호
    • /
    • pp.91-102
    • /
    • 2015
  • In this paper, the load-deflection analysis of the Carbon Fiber Reinforced Polymer (CFRP) strengthened Reinforced Concrete (RC) slab using Recurrent Neural Network (RNN) is investigated. Six reinforced concrete slabs having dimension $1800{\times}400{\times}120mm$ with similar steel bar of 2T10 and strengthened using different length and width of CFRP were tested and compared with similar samples without CFRP. The experimental load-deflection results were normalized and then uploaded in MATLAB software. Loading, CFRP length and width were as neurons in input layer and mid-span deflection was as neuron in output layer. The network was generated using feed-forward network and a internal nonlinear condition space model to memorize the input data while training process. From 122 load-deflection data, 111 data utilized for network generation and 11 data for the network testing. The results of model on the testing stage showed that the generated RNN predicted the load-deflection analysis of the slabs in acceptable technique with a correlation of determination of 0.99. The ratio between predicted deflection by RNN and experimental output was in the range of 0.99 to 1.11.

빅데이터 분석 교육의 문제점과 개선 방안 -학생 과제 보고서를 중심으로 (Problems of Big Data Analysis Education and Their Solutions)

  • 최도식
    • 한국융합학회논문지
    • /
    • 제8권12호
    • /
    • pp.265-274
    • /
    • 2017
  • 본 논문은 빅데이터 분석 교육의 문제점을 고찰해 그 개선 방안을 제시한다. 빅데이터의 특성은 V3에서 V5로 진화하고 있다. 이에 빅데이터 분석 교육도 V5를 감안한 데이터 분석 교육이 되어야 한다. 작금 불확실성의 증대는 데이터 분석의 리스크를 증가시키기에 내적 외적 구조화/비구조화 데이터를 비롯해 교란 요인마저 분석할 때 데이터의 신뢰성은 증가될 수 있다. 그리고 평판분석을 활용할 때 범하기 쉬운 오류가 가변성과 불확실성에 대한 상황 인식이다. 가변성의 측면을 고려해, 다양한 변수와 옵션에 의한 불확실성의 상황을 인식하고 대비한 데이터 분석이 이뤄질 때 데이터에 대한 신뢰성과 정확성은 증가할 수 있다. 사회관계망 분석에서 학생들과 일반 연구자들이 주로 활용하는 것이 텍스톰과 노드엑셀의 노드 분석이다. 사화관계망 분석은 매개중심성에 의한 상황 분석을 통해 다크 데이터를 찾아 이상 현상을 감지하고 현 상황을 분석하여 유용한 의미를 얻고 미래를 예측할 수 있어야 한다.

A Study on the Meaning of The First Slam Dunk Based on Text Mining and Semantic Network Analysis

  • Kyung-Won Byun
    • International journal of advanced smart convergence
    • /
    • 제12권1호
    • /
    • pp.164-172
    • /
    • 2023
  • In this study, we identify the recognition of 'The First Slam Dunk', which is gaining popularity as a sports-based cartoon through big data analysis of social media channels, and provide basic data for the development and development of various contents in the sports industry. Social media channels collected detailed social big data from news provided on Naver and Google sites. Data were collected from January 1, 2023 to February 15, 2023, referring to the release date of 'The First Slam Dunk' in Korea. The collected data were 2,106 Naver news data, and 1,019 Google news data were collected. TF and TF-IDF were analyzed through text mining for these data. Through this, semantic network analysis was conducted for 60 keywords. Big data analysis programs such as Textom and UCINET were used for social big data analysis, and NetDraw was used for visualization. As a result of the study, the keyword with the high frequency in relation to the subject in consideration of TF and TF-IDF appeared 4,079 times as 'The First Slam Dunk' was the keyword with the high frequency among the frequent keywords. Next are 'Slam Dunk', 'Movie', 'Premiere', 'Animation', 'Audience', and 'Box-Office'. Based on these results, 60 high-frequency appearing keywords were extracted. After that, semantic metrics and centrality analysis were conducted. Finally, a total of 6 clusters(competing movie, cartoon, passion, premiere, attention, Box-Office) were formed through CONCOR analysis. Based on this analysis of the semantic network of 'The First Slam Dunk', basic data on the development plan of sports content were provided.

Hierarchical Attention Network를 활용한 주제에 따른 온라인 고객 리뷰 분석 모델 (Analysis of the Online Review Based on the Theme Using the Hierarchical Attention Network)

  • 장인호;박기연;이준기
    • 한국IT서비스학회지
    • /
    • 제17권2호
    • /
    • pp.165-177
    • /
    • 2018
  • Recently, online commerces are becoming more common due to factors such as mobile technology development and smart device dissemination, and online review has a big influence on potential buyer's purchase decision. This study presents a set of analytical methodologies for understanding the meaning of customer reviews of products in online transaction. Using techniques currently developed in deep learning are implemented Hierarchical Attention Network for analyze meaning in online reviews. By using these techniques, we could solve time consuming pre-data analysis time problem and multiple topic problems. To this end, this study analyzes customer reviews of laptops sold in domestic online shopping malls. Our result successfully demonstrates over 90% classification accuracy. Therefore, this study classified the unstructured text data in the semantic analysis and confirmed the practical application possibility of the review analysis process.

빅데이터를 활용한 "조리학원"의 의미연결망 분석에 관한 연구 (A Study on the Semantic Network Analysis of "Cooking Academy" through the Big Data)

  • 이승후;김학선
    • 한국조리학회지
    • /
    • 제24권3호
    • /
    • pp.167-176
    • /
    • 2018
  • In this study, Big Data was used to collect the information related to 'Cooking Academy' keywords. After collecting all the data, we calculated the frequency through the text mining and selected the main words for future data analysis. Data collection was conducted from Google Web and News during the period from January 1, 2013 to December 31, 2017. The selected 64 words were analyzed by using UCINET 6.0 program, and the analysis results were visualized with NetDraw in order to present the relationship of main words. As a result, it was found that the most important goal for the students from cooking school is to work as a cook, likewise to have practical classes. In addition, we obtained the result that SNS marketing system that the social sites, such as Facebook, Twitter, and Instagram are actively utilized as a marketing strategy of the institute. Therefore, the results can be helpful in searching for the method of utilizing big data and can bring brand-new ideas for the follow-up studies. In practical terms, it will be remarkable material about the future marketing directions and various programs that are improved by the detailed curriculums through semantic network of cooking school by using big data.

디자인 분야에서 빅데이터를 활용한 감성평가방법 모색 -한복 연관 디자인 요소, 감성적 반응, 평가어휘를 중심으로- (An Investigation of a Sensibility Evaluation Method Using Big Data in the Field of Design -Focusing on Hanbok Related Design Factors, Sensibility Responses, and Evaluation Terms-)

  • 안효선;이인성
    • 한국의류학회지
    • /
    • 제40권6호
    • /
    • pp.1034-1044
    • /
    • 2016
  • This study seeks a method to objectively evaluate sensibility based on Big Data in the field of design. In order to do so, this study examined the sensibility responses on design factors for the public through a network analysis of texts displayed in social media. 'Hanbok', a formal clothing that represents Korea, was selected as the subject for the research methodology. We then collected 47,677 keywords related to Hanbok from 12,000 posts on Naver blogs from January $1^{st}$ to December $31^{st}$ 2015 and that analyzed using social matrix (a Big Data analysis software) rather than using previous survey methods. We also derived 56 key-words related to design elements and sensibility responses of Hanbok. Centrality analysis and CONCOR analysis were conducted using Ucinet6. The visualization of the network text analysis allowed the categorization of the main design factors of Hanbok with evaluation terms that mean positive, negative, and neutral sensibility responses. We also derived key evaluation factors for Hanbok as fitting, rationality, trend, and uniqueness. The evaluation terms extracted based on natural language processing technologies of atypical data have validity as a scale for evaluation and are expected to be suitable for utilization in an index for sensibility evaluation that supplements the limits of previous surveys and statistical analysis methods. The network text analysis method used in this study provides new guidelines for the use of Big Data involving sensibility evaluation methods in the field of design.

The Application of Machine Learning Algorithm In The Analysis of Tissue Microarray; for the Prediction of Clinical Status

  • Cho, Sung-Bum;Kim, Woo-Ho;Kim, Ju-Han
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.366-370
    • /
    • 2005
  • Tissue microarry is one of the high throughput technologies in the post-genomic era. Using tissue microarray, the researchers are able to investigate large amount of gene expressions at the level of DNA, RNA, and protein The important aspect of tissue microarry is its ability to assess a lot of biomarkers which have been used in clinical practice. To manipulate the categorical data of tissue microarray, we applied Bayesian network classifier algorithm. We identified that Bayesian network classifier algorithm could analyze tissue microarray data and integrating prior knowledge about gastric cancer could achieve better performance result. The results showed that relevant integration of prior knowledge promote the prediction accuracy of survival status of the immunohistochemical tissue microarray data of 18 tumor suppressor genes. In conclusion, the application of Bayesian network classifier seemed appropriate for the analysis of the tissue microarray data with clinical information.

  • PDF