• 제목/요약/키워드: Network Clustering

검색결과 1,271건 처리시간 0.022초

무선 애드 혹 네트워크에서 노드 클러스터링을 위한 유전 알고리즘 (A Genetic Algorithm for Clustering Nodes in Wireless Ad-hoc Networks)

  • 장길웅
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.649-651
    • /
    • 2017
  • 클러스터링 문제는 무선 애드 혹 네트워크의 네트워크 수명과 확장성을 향상시키는 문제 중 하나이다. 이 문제는 무선 애드 혹 네트워크의 설계 및 운영과 관련된 어려운 조합 최적화 문제이다. 본 논문에서는 네트워크 수명을 최대화하고 무선 애드 혹 네트워크의 확장성을 고려한 효율적인 클러스터링 알고리즘을 제안한다. 클러스터링 문제는 NP-hard 문제로 알려져 있습니다. 따라서 본 논문에서는 노드의 수가 많은 네트워크에서 합리적인 시간 내에 최적의 해를 효율적으로 얻을 수 있는 최적화 방식을 사용하여 문제를 해결한다. 제안된 알고리즘은 노드의 전력과 클러스터링 비용을 고려하여 클러스터 헤드를 선택하고 클러스터를 구성한다. 우리는 노드의 전송에너지 측면에서 시뮬레이션을 통해 성능을 평가한다. 시뮬레이션 결과는 제안된 알고리즘이 기존의 알고리즘보다 성능이 우수함을 보여 준다.

  • PDF

무선 센서 네트워크를 위한 효율적인 클러스터링 기법 (An Efficient Clustering Mechanism for WSN)

  • 이진우;모하매드 바니아타;홍지만
    • 스마트미디어저널
    • /
    • 제6권4호
    • /
    • pp.24-31
    • /
    • 2017
  • 무선 센서 네트워크에서는 원격의 열악한 환경에 센서 노드들이 배치된다. 이러한 네트워크에서 센서 노드의 전원이 모두 소모되면, 사람의 생명을 구할 수도 있는 센서 네트워크의 품질 및 성능 저하와 함께 센서 노드들은 쓸모가 없게 된다. 따라서 에너지 소비 개선 및 센서 네트워크의 수명 연장에 관련된 수 많은 클러스터링 프로토콜들이 제안되었으나 대부분의 기존 연구들의 기법들은 클러스터 헤드의 오버헤드 상당히 크다. 센서 노드의 전력 제한과 클러스터 헤드의 오버헤드 문제 때문에 각 노드의 에너지 소비를 최소화하며 네트워크 수명을 최대화하는 라우팅 프로토콜을 설계하는 것은 중요하다. 따라서 본 논문에서는 클러스터 헤드의 부담을 줄여주며 에너지 소비를 최소화하는 라우팅 알고리즘과 네트워크 수명을 최대화할 수 있는 알고리즘을 적용한 효율적인 클러스터링 기법을 제안한다. 시뮬레이션 결과는 제안한 클러스터링 기법이 에너지 균형을 향상시켰으며, 유사한 역할을 하는 기법들과 비교하였을 때 네트워크 수명이 연장됨을 보여준다.

K-means Clustering 기법과 신경망을 이용한 실시간 교통 표지판의 위치 인식 (Real-Time Traffic Sign Detection Using K-means Clustering and Neural Network)

  • 박정국;김경중
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.491-493
    • /
    • 2011
  • Traffic sign detection is the domain of automatic driver assistant systems. There are literatures for traffic sign detection using color information, however, color-based method contains ill-posed condition and to extract the region of interest is difficult. In our work, we propose a method for traffic sign detection using k-means clustering method, back-propagation neural network, and projection histogram features that yields the robustness for ill-posed condition. Using the color information of traffic signs enables k-means algorithm to cluster the region of interest for the detection efficiently. In each step of clustering, a cluster is verified by the neural network so that the cluster exactly represents the location of a traffic sign. Proposed method is practical, and yields robustness for the unexpected region of interest or for multiple detections.

Fundamental Considerations: Impact of Sensor Characteristics, Application Environments in Wireless Sensor Networks

  • Choi, Dongmin;Chung, Ilyong
    • 한국멀티미디어학회논문지
    • /
    • 제17권4호
    • /
    • pp.441-457
    • /
    • 2014
  • Observed from the recent performance evaluation of clustering schemes in wireless sensor networks, we found that most of them did not consider various sensor characteristics and its application environment. Without considering these, the performance evaluation results are difficult to be trusted because these networks are application-specific. In this paper, for the fair evaluation, we measured several clustering scheme's performance variations in accordance with sensor data pattern, number of sensors per node, density of points of interest (data density) and sensor coverage. According to the experiment result, we can conclude that clustering methods are easily influenced by POI variation. Network lifetime and data accuracy are also slightly influenced by sensor coverage and number of sensors. Therefore, in the case of the clustering scheme that did not consider various conditions, fair evaluation cannot be expected.

EETCA: Energy Efficient Trustworthy Clustering Algorithm for WSN

  • Senthil, T.;Kannapiran, Dr.B.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권11호
    • /
    • pp.5437-5454
    • /
    • 2016
  • A Wireless Sensor Network (WSN) is composed of several sensor nodes which are severely restricted to energy and memory. Energy is the lifeblood of sensors and thus energy conservation is a critical necessity of WSN. This paper proposes a clustering algorithm namely Energy Efficient Trustworthy Clustering algorithm (EETCA), which focuses on three phases such as chief node election, chief node recycling process and bi-level trust computation. The chief node election is achieved by Dempster-Shafer theory based on trust. In the second phase, the selected chief node is recycled with respect to the current available energy. The final phase is concerned with the computation of bi-level trust, which is triggered for every time interval. This is to check the trustworthiness of the participating nodes. The nodes below the fixed trust threshold are blocked, so as to ensure trustworthiness. The system consumes lesser energy, as all the nodes behave normally and unwanted energy consumption is completely weeded out. The experimental results of EETCA are satisfactory in terms of reduced energy consumption and prolonged lifetime of the network.

Discovering Community Interests Approach to Topic Model with Time Factor and Clustering Methods

  • Ho, Thanh;Thanh, Tran Duy
    • Journal of Information Processing Systems
    • /
    • 제17권1호
    • /
    • pp.163-177
    • /
    • 2021
  • Many methods of discovering social networking communities or clustering of features are based on the network structure or the content network. This paper proposes a community discovery method based on topic models using a time factor and an unsupervised clustering method. Online community discovery enables organizations and businesses to thoroughly understand the trend in users' interests in their products and services. In addition, an insight into customer experience on social networks is a tremendous competitive advantage in this era of ecommerce and Internet development. The objective of this work is to find clusters (communities) such that each cluster's nodes contain topics and individuals having similarities in the attribute space. In terms of social media analytics, the method seeks communities whose members have similar features. The method is experimented with and evaluated using a Vietnamese corpus of comments and messages collected on social networks and ecommerce sites in various sectors from 2016 to 2019. The experimental results demonstrate the effectiveness of the proposed method over other methods.

Gated Multi-channel Network Embedding for Large-scale Mobile App Clustering

  • Yeo-Chan Yoon;Soo Kyun Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권6호
    • /
    • pp.1620-1634
    • /
    • 2023
  • This paper studies the task of embedding nodes with multiple graphs representing multiple information channels, which is useful in a large volume of network clustering tasks. By learning a node using multiple graphs, various characteristics of the node can be represented and embedded stably. Existing studies using multi-channel networks have been conducted by integrating heterogeneous graphs or limiting common nodes appearing in multiple graphs to have similar embeddings. Although these methods effectively represent nodes, it also has limitations by assuming that all networks provide the same amount of information. This paper proposes a method to overcome these limitations; The proposed method gives different weights according to the source graph when embedding nodes; the characteristics of the graph with more important information can be reflected more in the node. To this end, a novel method incorporating a multi-channel gate layer is proposed to weigh more important channels and ignore unnecessary data to embed a node with multiple graphs. Empirical experiments demonstrate the effectiveness of the proposed multi-channel-based embedding methods.

공통 이웃 그래프 밀도를 사용한 소셜 네트워크 분석 (Social Network Analysis using Common Neighborhood Subgraph Density)

  • 강윤섭;최승진
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권4호
    • /
    • pp.432-436
    • /
    • 2010
  • 소셜 네트워크를 비롯한 네트워크로부터 커뮤니티를 발견하려면 네트워크의 노드를 그룹 내에서는 서로 조밀하게 연결되고 그룹 간에는 연결의 밀도가 낮은 그룹들로 군집화하는 과정이 꼭 필요하다. 군집화 알고리즘의 성능을 위해서는 군집화의 기준이 되는 유사도 기준이 잘 정의되어야 한다. 이 논문에서는 네트워크 내의 커뮤니티 발견을 위해 유사도 기준을 정의하고, 정의한 유사도를 유사도 전파(affinity propagation) 알고리즘과 결합하여 만든 방법을 기존의 방법들과 비교한다.

Hierarchical Structure in Semantic Networks of Japanese Word Associations

  • Miyake, Maki;Joyce, Terry;Jung, Jae-Young;Akama, Hiroyuki
    • 한국언어정보학회:학술대회논문집
    • /
    • 한국언어정보학회 2007년도 정기학술대회
    • /
    • pp.321-329
    • /
    • 2007
  • This paper reports on the application of network analysis approaches to investigate the characteristics of graph representations of Japanese word associations. Two semantic networks are constructed from two separate Japanese word association databases. The basic statistical features of the networks indicate that they have scale-free and small-world properties and that they exhibit hierarchical organization. A graph clustering method is also applied to the networks with the objective of generating hierarchical structures within the semantic networks. The method is shown to be an efficient tool for analyzing large-scale structures within corpora. As a utilization of the network clustering results, we briefly introduce two web-based applications: the first is a search system that highlights various possible relations between words according to association type, while the second is to present the hierarchical architecture of a semantic network. The systems realize dynamic representations of network structures based on the relationships between words and concepts.

  • PDF

무선 센서 네트워크를 위한 에너지 효율적인 이중 레이어 분산 클러스터링 기법 (A Dual-layer Energy Efficient Distributed Clustering Algorithm for Wireless Sensor Networks)

  • 여명호;김유미;유재수
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제35권1호
    • /
    • pp.84-95
    • /
    • 2008
  • 최근 무선 센서 네트워크는 다양한 응용분야의 플랫폼으로써 사용되고 있다. 무선 센서를 배치하고, 센서 네트워크를 구성함으로써 원격으로 어떤 영역에 포함된 객체들의 동작, 상태, 위치 등에 관한 정보를 얻을 수 있다. 일반적으로 센서 노드들은 제한된 배터리로 동작하기 때문에 센서 네트워크의 생명주기를 연장시키기 위한 에너지 효율적인 데이타 수집 메커니즘은 필수 조건이다. 본 논문에서는 클러스터 헤드의 에너지 소모를 분산할 수 있는 새로운 클러스터링 기법을 제안한다. 먼저 클러스터 헤드의 역할에 따른 에너지 소모를 분석하고, 클러스터를 수집과 전송을 위한 두 계층으로 분리한다. 다음 각 계층을 담당하는 센서 노드를 선출하여 단일 클러스터 헤드의 에너지 소모를 2개의 센서 노드로 분산한다. 제안하는 클러스터링 기법의 우수성을 보이기 위해 시뮬레이션을 통해 기존의 클러스터링 기법과 성능을 비교했다. 그 결과, 기존의 알고리즘에 비해 생명 주기(lifetime)가 $10%{\sim}40%$ 향상되는 것을 확인할 수 있었다.