• Title/Summary/Keyword: Network Bandwidth Saving

Search Result 29, Processing Time 0.028 seconds

An Address Autoconfiguration Algorithm of Mobile IPv6 through Internet Gateway in Ad-Hoc networks (Mobile IPv6기반 Ad-Hoc 네트워크에서의 Internet Gateway를 통한 IP주소 자동 할당 방법)

  • Choi, Jung-Woo;Park, Sung-Han
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1067-1070
    • /
    • 2005
  • In this paper, we propose the address allocation algorithm in hybrid Mobile ad-hoc network (MANET). Most of proposed address autoconfiguration algorithms are node based. Node based address autoconfiguration algorithms are inefficient. Because the node based algorithms waste bandwidth and consume much battery in mobile ad-hoc networks. we present the address allocation algorithm using internet gateway based address autoconfiguration by modifing the IPv6 stateless address autoconfiguration protocol. We use the network simulator NS-2 in our experiments. The simulation result shows reducing network traffic and saving battery.

  • PDF

A New Energy Saving Transport Protocol in Wireless Environments (무선 환경에서 새로운 에너지 절약형 전송 프로토콜)

  • Hwang, Sae-Joon;Lee, Jung-Min;Chung, Kwang-Sue
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.11_12
    • /
    • pp.654-662
    • /
    • 2005
  • Mobile portable devices for wireless network solely depend on a limited battery power. Therefore, we need to design for wireless communication protocols with an energy efficiency. TCP-Westwood is one of the most important approaches on TCP performance improvement in wireless environments that estimates the available bandwidth by using the sampling mechanism. The advantage is that data can be transmitted efficiently using the estimation of available bandwidth. However, when the sender with TCP-Westwood is in a wireless environment, it does not consider of the sampling mechanism operation. In this thesis, a new energy saving transport protocol, called E2TP(Energy Efficient Transport Protocol), is proposed to solve problems which occur when the sender with TCP-Westwood is in a wireless environment. Also, when there are packet loss while doing frequent link error in a wireless environment, E2TP provides the instantaneous segment size adjustment for a more efficient data retransmission. The simulation result proves that the proposed E2TP has better performance in energy efficiency and throughput than both TCP and TCP-Westwood.

Object version Transcoding for Streaming Media Service in Wireless Mobile Networks (무선 모바일 네트워크상에서 스트리밍 미디어 서비스를 위한 객체 버전 트랜스코딩)

  • Lee, Chong-Deuk
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.3
    • /
    • pp.355-363
    • /
    • 2011
  • Transcoding in the wireless mobile network is an important mechanism that reduces the delay time and improves the stream processing capacity. Wireless mobile streaming media services, however, have such problems as congestion, interference and delay due to narrow network bandwidth and limited resources. These problems degrade not only Quality of Service (QoS) but also responsiveness of the streaming media service. To solve this problem, this paper proposes a object version transcoding method. The proposed method analyzes the object versions to construct the transcoding graph. This paper utilizes a reference rate-based control function for an efficient streaming, and measures MVDS(Multiple Version Delay Saving) for an efficient delay savings. The simulation results show that the proposed mechanism achieves improved performance in delay rate and cache hit rate compared with those of other existing methods.

A Level Group Streaming Technique for Interactive VOD based on P2P (P2P 기반 Interactive VOD를 위한 레벨 그룹 스트리밍 기법)

  • Kim, Jong-Gyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11C
    • /
    • pp.955-962
    • /
    • 2008
  • Multicast Strategy is one of the cost-saving methods in the large scale VOD environment. However, it does involve complicated problems to implement VCR-like interactions for user's convenience in the multicast streaming system under considering the limited-server and the network's bandwidth in the multicast-transmission system. Therefore, the proper solution of settling such a problem is necessary. Thus, this paper which revised P2Patching[l] proposes LGST(Level Group Streaming Technique) which supports the VCR's function through cooperation among peers with heterogeneous bandwidth under the environment of P2P. This strategy can reduce latency by improving the acceptance of server and using the bandwidth of network efficiently. And for evaluate the proposed scheme's performance, I simulated the performance of streaming delivery topology and streaming quality in comparison with P2Patching. In evaluation to service request refusal ratio and service quality according to bandwidth decrement, the result of simulation shows that proposed LGST improves about $11{\sim}18%$ of performance than P2Patching. In the test of latency recovery according to fault probability and influence of VCR function operation duration, it shows similar performance.

Fast Distributed Network File System using State Transition Model in the Media Streaming System (미디어 스트리밍 시스템에서의 상태 천이 모델을 활용한 고속 분산 네트워크 파일 시스템)

  • Woo, Soon;Lee, Jun-Pyo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.6
    • /
    • pp.145-152
    • /
    • 2012
  • Due to the large sizes of streaming media, previous delivery techniques are not providing optimal performance. For this purpose, video proxy server is employed for reducing the bandwidth consumption, network congestion, and network traffic. This paper proposes a fast distributed network file system using state transition model in the media streaming system for efficient utilization of video proxy server. The proposed method is composed of three steps: step 1. Training process using state transition model, step 2. base and decision probability generation, and step 3. storing and deletion based on probability. In addition, storage space of video proxy server is divided into each segment area in order to store the segments efficiently and to avoid the fragmentation. The simulation results show that the proposed method performs better than other methods in terms of hit rate and number of deletion. Therefore, the proposed method provides the lowest user start-up latency and the highest bandwidth saving significantly.

Distributed Computing Models for Wireless Sensor Networks (무선 센서 네트워크에서의 분산 컴퓨팅 모델)

  • Park, Chongmyung;Lee, Chungsan;Jo, Youngtae;Jung, Inbum
    • Journal of KIISE
    • /
    • v.41 no.11
    • /
    • pp.958-966
    • /
    • 2014
  • Wireless sensor networks offer a distributed processing environment. Many sensor nodes are deployed in fields that have limited resources such as computing power, network bandwidth, and electric power. The sensor nodes construct their own networks automatically, and the collected data are sent to the sink node. In these traditional wireless sensor networks, network congestion due to packet flooding through the networks shortens the network life time. Clustering or in-network technologies help reduce packet flooding in the networks. Many studies have been focused on saving energy in the sensor nodes because the limited available power leads to an important problem of extending the operation of sensor networks as long as possible. However, we focus on the execution time because clustering and local distributed processing already contribute to saving energy by local decision-making. In this paper, we present a cooperative processing model based on the processing timeline. Our processing model includes validation of the processing, prediction of the total execution time, and determination of the optimal number of processing nodes for distributed processing in wireless sensor networks. The experiments demonstrate the accuracy of the proposed model, and a case study shows that our model can be used for the distributed application.

A Super-Peer Coordination Scheme for Decentralized Peer-to-Peer Networking Using Mobile Agents

  • Chung, Won-Ho;Kang, Namhi
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.38-45
    • /
    • 2015
  • Peer-to-Peer(P2P) systems are generally classified into two categories; hybrid and pure P2P. Hybrid systems have a single central index server keeping the details of shared information, so that undesirable effects such as heavy load on that server and lack of fault-tolerance can be caused. Pure P2P causes the other problems such as message flooding and scalability although it shows high degree of fault-tolerance. Recently, mobile agent-based distributed computing has been receiving wide attention for its potential to support disconnected operations, high asynchrony, and thus saving network bandwidth. In this paper, a new scheme of peer coordination is proposed for a decentralized P2P network with self-organizing structure. We deployed mobile agents for incorporating the advantages of usage of mobile agents into our P2P network. Proposed P2P network has both advantages of hybrid and pure P2P. The problems of heavy load on the server and lack of fault-tolerance are improved by using multiple special peers called super-peers. And the problems of pure P2P can be reduced by using mobile agents.

A Cell Loss Constraint Method of Bandwidth Renegotiation for Prioritized MPEG Video Data Transmission in ATM Networks (ATM망에서 우선 순위가 주어진 MPEG 비디오 데이터 전송시 대역폭 재협상을 통한 셀 손실 방지 기법)

  • Yun, Byoung-An;Kim, Eun-Hwan;Jun, Moon-Seog
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.7
    • /
    • pp.1770-1780
    • /
    • 1997
  • Our problem is improvement of image quality because it is inevitable cell loss of image data when traffic congestion occurs. If cells are discarded indiscriminately in transmission of MPEG video data, it occurs severe degradation in quality of service(QOS). In this paper, to solve this problem, we propose two method. The first, we analyze the traffic characteristics of an MPEG encoder and generate high priority and low priority data stream. During network congestion, only the least low priority cells are dropped, and this ensures that the high priority cells are successfully transmitted, which, in turn, guarantees satisfactory QoS. In this case, the prioritization scheme for the encoder assigns components of the data stream to each priority level based on the value of a parameter ${\beta}$. The second, Number of high priority cells are increased when value of ${\beta}$ is large. It occurs the loss of high priority cell in the congestion. To prevent it, this paper is regulated to data stream rate as buffer occupancy with UPC controller. Therefore, encoder's bandwidth can be calculated renegotiation of the encoder and networks. In this paper, the encoder's bandwidth requirements are characterized by a usage parameter control (UPC) set consisting of peak rate, burstness, and sustained rate. An adaptive encoder rate control algorithm at the Networks Interface Card(NIC) computes the necessary UPC parameter to maintain the user specified quality of service. Simulation results are given for a rate-controlled VBR video encoder operating through an ATM network interface which supports dynamic UPC. These results show that dynamic bandwidth renegotiation of prioritized data stream could provided bandwidth saving and significant quality gains which guarantee high priority data stream.

  • PDF

An Energy Efficient Multichannel MAC Protocol for QoS Provisioning in MANETs

  • Kamruzzaman, S.M.;Hamid, Md. Abdul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.684-702
    • /
    • 2011
  • This paper proposes a TDMA-based multichannel medium access control (MAC) protocol for QoS provisioning in mobile ad hoc networks (MANETs) that enables nodes to transmit their packets in distributed channels. The IEEE 802.11 standard supports multichannel operation at the physical (PHY) layer but its MAC protocol is designed only for a single channel. The single channel MAC protocol does not work well in multichannel environment because of the multichannel hidden terminal problem. Our proposed protocol enables nodes to utilize multiple channels by switching channels dynamically, thus increasing network throughput. Although each node of this protocol is equipped with only a single transceiver but it solves the multichannel hidden terminal problem using temporal synchronization. The proposed energy efficient multichannel MAC (EM-MAC) protocol takes the advantage of both multiple channels and TDMA, and achieves aggressive power savings by allowing nodes that are not involved in communications to go into power saving "sleep mode". We consider the problem of providing QoS guarantee to nodes as well as to maintain the most efficient use of scarce bandwidth resources. Our scheme improves network throughput and lifetime significantly, especially when the network is highly congested. The simulation results show that our proposed scheme successfully exploits multiple channels and significantly improves network performance by providing QoS guarantee in MANETs.

The IPSec Systems on TOE for Gigabit Network (기가비트 네트워크 지원을 위한 TOE 기반 IPSec 시스템)

  • Shin, Chi-Hoon;Kim, Sun-Wook;Park, Kyoung;Kim, Sung-Woon
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1035-1038
    • /
    • 2005
  • This paper describes the designs and the implementations of two H/W IPSec Systems, look-aside and inline, on TOE (Transport Offloading Engine). These systems aim for guaranteeing the security of datagram networks while preserving the bandwidth of gigabit networks. The TOE offloads a host CPU from network burdens, so that it makes the gigabit wire speed possible, and then deeper level security architecture of the IPSec guarantees the security of gigabit service network dominated by datagram packets. The focus of this paper is to minimize the TOE's performance degradation caused by the computation-oriented IPSec. The look-aside IPSec system provides a significant improvement in the CPU offload of the IPSec cryptography loads. However, the inline system completely offloads the host CPU from whole IPSec loads, providing significant additional cost saving compared to the look-aside system. In this paper, the implementations of TOE cards including commercial IPSec processors are presented. As the result of performance evaluation with the protocol analyzer, we can get the fact that the inline IPSec system is 8 times faster than the S/W system and 2 times faster than the look-aside system.

  • PDF