• Title/Summary/Keyword: Network의 시공간적 특성

Search Result 49, Processing Time 0.024 seconds

Retrieval of Hourly Aerosol Optical Depth Using Top-of-Atmosphere Reflectance from GOCI-II and Machine Learning over South Korea (GOCI-II 대기상한 반사도와 기계학습을 이용한 남한 지역 시간별 에어로졸 광학 두께 산출)

  • Seyoung Yang;Hyunyoung Choi;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.933-948
    • /
    • 2023
  • Atmospheric aerosols not only have adverse effects on human health but also exert direct and indirect impacts on the climate system. Consequently, it is imperative to comprehend the characteristics and spatiotemporal distribution of aerosols. Numerous research endeavors have been undertaken to monitor aerosols, predominantly through the retrieval of aerosol optical depth (AOD) via satellite-based observations. Nonetheless, this approach primarily relies on a look-up table-based inversion algorithm, characterized by computationally intensive operations and associated uncertainties. In this study, a novel high-resolution AOD direct retrieval algorithm, leveraging machine learning, was developed using top-of-atmosphere reflectance data derived from the Geostationary Ocean Color Imager-II (GOCI-II), in conjunction with their differences from the past 30-day minimum reflectance, and meteorological variables from numerical models. The Light Gradient Boosting Machine (LGBM) technique was harnessed, and the resultant estimates underwent rigorous validation encompassing random, temporal, and spatial N-fold cross-validation (CV) using ground-based observation data from Aerosol Robotic Network (AERONET) AOD. The three CV results consistently demonstrated robust performance, yielding R2=0.70-0.80, RMSE=0.08-0.09, and within the expected error (EE) of 75.2-85.1%. The Shapley Additive exPlanations(SHAP) analysis confirmed the substantial influence of reflectance-related variables on AOD estimation. A comprehensive examination of the spatiotemporal distribution of AOD in Seoul and Ulsan revealed that the developed LGBM model yielded results that are in close concordance with AERONET AOD over time, thereby confirming its suitability for AOD retrieval at high spatiotemporal resolution (i.e., hourly, 250 m). Furthermore, upon comparing data coverage, it was ascertained that the LGBM model enhanced data retrieval frequency by approximately 8.8% in comparison to the GOCI-II L2 AOD products, ameliorating issues associated with excessive masking over very illuminated surfaces that are often encountered in physics-based AOD retrieval processes.

Application of spatiotemporal transformer model to improve prediction performance of particulate matter concentration (미세먼지 예측 성능 개선을 위한 시공간 트랜스포머 모델의 적용)

  • Kim, Youngkwang;Kim, Bokju;Ahn, SungMahn
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.329-352
    • /
    • 2022
  • It is reported that particulate matter(PM) penetrates the lungs and blood vessels and causes various heart diseases and respiratory diseases such as lung cancer. The subway is a means of transportation used by an average of 10 million people a day, and although it is important to create a clean and comfortable environment, the level of particulate matter pollution is shown to be high. It is because the subways run through an underground tunnel and the particulate matter trapped in the tunnel moves to the underground station due to the train wind. The Ministry of Environment and the Seoul Metropolitan Government are making various efforts to reduce PM concentration by establishing measures to improve air quality at underground stations. The smart air quality management system is a system that manages air quality in advance by collecting air quality data, analyzing and predicting the PM concentration. The prediction model of the PM concentration is an important component of this system. Various studies on time series data prediction are being conducted, but in relation to the PM prediction in subway stations, it is limited to statistical or recurrent neural network-based deep learning model researches. Therefore, in this study, we propose four transformer-based models including spatiotemporal transformers. As a result of performing PM concentration prediction experiments in the waiting rooms of subway stations in Seoul, it was confirmed that the performance of the transformer-based models was superior to that of the existing ARIMA, LSTM, and Seq2Seq models. Among the transformer-based models, the performance of the spatiotemporal transformers was the best. The smart air quality management system operated through data-based prediction becomes more effective and energy efficient as the accuracy of PM prediction improves. The results of this study are expected to contribute to the efficient operation of the smart air quality management system.

Multi-modal Emotion Recognition using Semi-supervised Learning and Multiple Neural Networks in the Wild (준 지도학습과 여러 개의 딥 뉴럴 네트워크를 사용한 멀티 모달 기반 감정 인식 알고리즘)

  • Kim, Dae Ha;Song, Byung Cheol
    • Journal of Broadcast Engineering
    • /
    • v.23 no.3
    • /
    • pp.351-360
    • /
    • 2018
  • Human emotion recognition is a research topic that is receiving continuous attention in computer vision and artificial intelligence domains. This paper proposes a method for classifying human emotions through multiple neural networks based on multi-modal signals which consist of image, landmark, and audio in a wild environment. The proposed method has the following features. First, the learning performance of the image-based network is greatly improved by employing both multi-task learning and semi-supervised learning using the spatio-temporal characteristic of videos. Second, a model for converting 1-dimensional (1D) landmark information of face into two-dimensional (2D) images, is newly proposed, and a CNN-LSTM network based on the model is proposed for better emotion recognition. Third, based on an observation that audio signals are often very effective for specific emotions, we propose an audio deep learning mechanism robust to the specific emotions. Finally, so-called emotion adaptive fusion is applied to enable synergy of multiple networks. The proposed network improves emotion classification performance by appropriately integrating existing supervised learning and semi-supervised learning networks. In the fifth attempt on the given test set in the EmotiW2017 challenge, the proposed method achieved a classification accuracy of 57.12%.

Trajectory Index Structure based on Signatures for Moving Objects on a Spatial Network (공간 네트워크 상의 이동객체를 위한 시그니처 기반의 궤적 색인구조)

  • Kim, Young-Jin;Kim, Young-Chang;Chang, Jae-Woo;Sim, Chun-Bo
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.3
    • /
    • pp.1-18
    • /
    • 2008
  • Because we can usually get many information through analyzing trajectories of moving objects on spatial networks, efficient trajectory index structures are required to achieve good retrieval performance on their trajectories. However, there has been little research on trajectory index structures for spatial networks such as FNR-tree and MON-tree. Also, because FNR-tree and MON-tree store the segment unit of moving objects, they can't support the trajectory of whole moving objects. In this paper, we propose an efficient trajectory index structures based on signatures on a spatial network, named SigMO-Tree. For this, we divide moving object data into spatial and temporal attributes, and design an index structure which supports not only range query but trajectory query by preserving the whole trajectory of moving objects. In addition, we divide user queries into trajectory query based on spatio-temporal area and similar-tralectory query, and propose query processing algorithms to support them. The algorithm uses a signature file in order to retrieve candidate trajectories efficiently Finally, we show from our performance analysis that our trajectory index structure outperforms the existing index structures like FNR-Tree and MON-Tree.

  • PDF

A study on the regional climate change scenario for impact assessment on water resources (수자원 영향평가에 활용 가능한 지역기후변화 시나리오 연구)

  • Im, Eun-Soon;Kwon, Won-Tae;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.12 s.173
    • /
    • pp.1043-1056
    • /
    • 2006
  • Our ultimate purpose is to investigate the potential change in regional surface climate due to the global warming and to produce higher quality regional surface climate information over the Korean peninsula for comprehensive impact assessment. Toward this purpose, we carried out two 30-year long experiments, one for present day conditions (covering the period 1971-2000) and one for near future climate conditions (covering the period 2021-2050) with a regional climate model (RegCM3) using a one-way double-nested system. In order to obtain the confidence in a future climate projection, we first verify the model basic performance of how the reference simulation is realistic in comparison with a fairly dense observation network. We then examine the possible future changes in mean climate state as well as in the frequency and intensity of extreme climate events to be derived by difference between climate condition as a baseline and future simulated climate states with increased greenhouse gas. Emphasis in this study is placed on the high-resolution spatial/temporal aspects of the climate change scenarios under different climate settings over Korea generated by complex topography and coastlines that are relevant on a regional scale.

Process Networks of Ecohydrological Systems in a Temperate Deciduous Forest: A Complex Systems Perspective (온대활엽수림 생태수문계의 과정망: 복잡계 관점)

  • Yun, Juyeol;Kim, Sehee;Kang, Minseok;Cho, Chun-Ho;Chun, Jung-Hwa;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.3
    • /
    • pp.157-168
    • /
    • 2014
  • From a complex systems perspective, ecohydrological systems in forests may be characterized with (1) large networks of components which give rise to complex collective behaviors, (2) sophisticated information processing, and (3) adaptation through self-organization and learning processes. In order to demonstrate such characteristics, we applied the recently proposed 'process networks' approach to a temperate deciduous forest in Gwangneung National Arboretum in Korea. The process network analysis clearly delineated the forest ecohydrological systems as the hierarchical networks of information flows and feedback loops with various time scales among different variables. Several subsystems were identified such as synoptic subsystem (SS), atmospheric boundary layer subsystem (ABLS), biophysical subsystem (BPS), and biophysicochemical subsystem (BPCS). These subsystems were assembled/disassembled through the couplings/decouplings of feedback loops to form/deform newly aggregated subsystems (e.g., regional subsystem) - an evidence for self-organizing processes of a complex system. Our results imply that, despite natural and human disturbances, ecosystems grow and develop through self-organization while maintaining dynamic equilibrium, thereby continuously adapting to environmental changes. Ecosystem integrity is preserved when the system's self-organizing processes are preserved, something that happens naturally if we maintain the context for self-organization. From this perspective, the process networks approach makes sense.

Dynamic Load Management Method for Spatial Data Stream Processing on MapReduce Online Frameworks (맵리듀스 온라인 프레임워크에서 공간 데이터 스트림 처리를 위한 동적 부하 관리 기법)

  • Jeong, Weonil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.535-544
    • /
    • 2018
  • As the spread of mobile devices equipped with various sensors and high-quality wireless network communications functionsexpands, the amount of spatio-temporal data generated from mobile devices in various service fields is rapidly increasing. In conventional research into processing a large amount of real-time spatio-temporal streams, it is very difficult to apply a Hadoop-based spatial big data system, designed to be a batch processing platform, to a real-time service for spatio-temporal data streams. This paper extends the MapReduce online framework to support real-time query processing for continuous-input, spatio-temporal data streams, and proposes a load management method to distribute overloads for efficient query processing. The proposed scheme shows a dynamic load balancing method for the nodes based on the inflow rate and the load factor of the input data based on the space partition. Experiments show that it is possible to support efficient query processing by distributing the spatial data stream in the corresponding area to the shared resources when load management in a specific area is required.

Satellite-Based Cabbage and Radish Yield Prediction Using Deep Learning in Kangwon-do (딥러닝을 활용한 위성영상 기반의 강원도 지역의 배추와 무 수확량 예측)

  • Hyebin Park;Yejin Lee;Seonyoung Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.1031-1042
    • /
    • 2023
  • In this study, a deep learning model was developed to predict the yield of cabbage and radish, one of the five major supply and demand management vegetables, using satellite images of Landsat 8. To predict the yield of cabbage and radish in Gangwon-do from 2015 to 2020, satellite images from June to September, the growing period of cabbage and radish, were used. Normalized difference vegetation index, enhanced vegetation index, lead area index, and land surface temperature were employed in this study as input data for the yield model. Crop yields can be effectively predicted using satellite images because satellites collect continuous spatiotemporal data on the global environment. Based on the model developed previous study, a model designed for input data was proposed in this study. Using time series satellite images, convolutional neural network, a deep learning model, was used to predict crop yield. Landsat 8 provides images every 16 days, but it is difficult to acquire images especially in summer due to the influence of weather such as clouds. As a result, yield prediction was conducted by splitting June to July into one part and August to September into two. Yield prediction was performed using a machine learning approach and reference models , and modeling performance was compared. The model's performance and early predictability were assessed using year-by-year cross-validation and early prediction. The findings of this study could be applied as basic studies to predict the yield of field crops in Korea.

Dynamic Traffic Assignment Using Genetic Algorithm (유전자 알고리즘을 이용한 동적통행배정에 관한 연구)

  • Park, Kyung-Chul;Park, Chang-Ho;Chon, Kyung-Soo;Rhee, Sung-Mo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.1 s.15
    • /
    • pp.51-63
    • /
    • 2000
  • Dynamic traffic assignment(DTA) has been a topic of substantial research during the past decade. While DTA is gradually maturing, many aspects of DTA still need improvement, especially regarding its formulation and solution algerian Recently, with its promise for In(Intelligent Transportation System) and GIS(Geographic Information System) applications, DTA have received increasing attention. This potential also implies higher requirement for DTA modeling, especially regarding its solution efficiency for real-time implementation. But DTA have many mathematical difficulties in searching process due to the complexity of spatial and temporal variables. Although many solution algorithms have been studied, conventional methods cannot iud the solution in case that objective function or constraints is not convex. In this paper, the genetic algorithm to find the solution of DTA is applied and the Merchant-Nemhauser model is used as DTA model because it has a nonconvex constraint set. To handle the nonconvex constraint set the GENOCOP III system which is a kind of the genetic algorithm is used in this study. Results for the sample network have been compared with the results of conventional method.

  • PDF