• Title/Summary/Keyword: Netring

Search Result 2, Processing Time 0.014 seconds

A Study on the Characteristics of the Soysauce Wastewater Treatment in Aerobic Submerged Biofilter (간접포기식 침지여상의 장류 폐수처리특성에 관한 연구)

  • 권영호;원찬희;신승원
    • Journal of Environmental Science International
    • /
    • v.7 no.5
    • /
    • pp.679-685
    • /
    • 1998
  • The Soysauce wastewater removal characteristics of submerged biofilters filled with two filter media respectively were experimentally examined with constant temperature, pH value and variable BOD loading and recirculation ratio. The decreasing order of BOD removal is Netring(random plastic media), cubic wire meshes(plastic module). This is mainly due to the media characteristics such as void ratio, specific surface area and media shapes. The BOD removal ratio decreases with increasing $BOD_5$/ volumetric loading rate, and the loading rate for the BOD removal over 85% is lower than 1.5kg$BOD_5$ 5/$m^3$d for the plastic media of Netring and cubic wire meshes. The $BOD_5$ removal rate increases with the recirculation ratio, but the rate of increase become smaller as the recirculation ratio increases over 20. When $BOD_5$ volumetric loading is 1.5kg$BOD_5$/$m^3$d, the required recirculation ratio to obtain 85% BOD$_{5}$ removal is about 20 for Netring and it was about 30 for cubic wire meshes.s.

  • PDF

A Study on the BOD Removal Characteristics of Aerobic Submerged Biofilter (Media를 충전(充塡)한 간접폭기식(間接曝氣式) 침지여상(浸漬濾床)에 의한 BOD제거 특성에 관한 연구)

  • Yang, Sang Hyun;Kwon, Young Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.669-678
    • /
    • 1994
  • The BOD removal characteristics of submerged biofilters filled with three kinds of filter media respectively were experimentally examined with constant temperature, pH value and variable BOD loading and recirculation ratio. Obtained results are as follows; 1. The BOD removal ratio decreases with the increasing $BOD_5$ volumetric loading rate, and the loading rate for the BOD removal over 90% is lower thean $1.6kg{\cdot}BOD_5/m^3{\cdot}d$ for the plastic media of Netring and cubic wire meshes. This is a much large value than $0.3{\sim}0.8kg{\cdot}BOD_5/m^3{\cdot}d$ for conventional activated sludge process. The required submerged biofilter volume is found to be much samller than that of conventional activated sludge process. 2. The decreasing order of BOD removal is Netring (random plastic media), cubic wire meshes (plastic module), and then gravel (stone media). This is mainly due to the media characteristics such as void ratio, specific surface area and media shapes. 3. The $BOD_5$ removal rate increases with the recircuration ration, but the rate of increases becomes samaller as the recirculation ratio increases over 20. When $BOD_5$ loading is $1.8kg{\cdot}BOD_5/m^3{\cdot}d$, the required recirculation rationto obtain 90% $BOD_5$ removal is about 20 for Netring and it was about 30 for cubic wire meshes. 4. Reynold's Number increases with recirculation ratio, and the Reynold's Numbers corresponding to the recircuration ratio of 10~50 are less than 52, showing laminar up flows in the filter. The settled and effluent sludges increase with increase of Reynol's Number, and there are the definite Reynold's Numbers at which the settling sludge concentrations become nearly constant respectively in each filters. 5. In this submerged biofilter system, small volume of sludge hopper can be substituted for a separated settling tank.

  • PDF