• Title/Summary/Keyword: Neotectonics

Search Result 4, Processing Time 0.021 seconds

Neotectonics and late Quaternary Marine Terraces along the Coastal Zone of the Northern Chile. (칠레 북부해안에 발달된 제4기 해안단구(고해수면)와 신구조운동)

  • 한상준
    • The Korean Journal of Quaternary Research
    • /
    • v.9 no.1
    • /
    • pp.61-86
    • /
    • 1995
  • 칠레 북부해안에는 여러개의 해안 단구들이 발견되는데 이는 지구조 운동과 하께 해수면 변동과 밀접한 관련이 있다, 단구의 형성시기는 전부 밝혀지지는 않았으며 여전히 논란이 되고 있다,. 안토파가스타에서 이끼케까지 9개지역에서 발견되는 여러단구에 대한 탄 소 연대측정 전자스핀 공명법, 우라늄측정, 아미노산 연대측정 방법들을 이용하여 그 형성시 기를 측정하였다, 그결과들은 기본적으로 3∼4개의 뚜렷한 단구를 선정하여 지역간에 서로 대비하였다, 대부분의 단구들은 산소 동위연소 연대(Oxygen Isotope State) 3에서 11범주에 들어가는데 이것은 계단식 단구들이 단지 지구조 운동만으로 형성된 것이 아니라 전지구 기 후 변동과 밀접하게 관련된 전세계 해수면 변동에 의해 강한 영향을 받았음을 시사한다. 특 히 플라이스토세에 형성된 일련의 해빈 사구들은 플라이스토세 초기에서 중기사이 반복된 간빙기를 나타낸다.

  • PDF

Seismicity of the Korean Peninsula and Its Vicinity (한반도와 그 인접지역의 지진활동(地震活動))

  • Kim, So Gu
    • Economic and Environmental Geology
    • /
    • v.13 no.1
    • /
    • pp.51-63
    • /
    • 1980
  • The seismicity of the Korean Peninsula and its vicinity is investigated temporally (2 A. D. to 1978) and spatially to evaluate the seismic risk and to understand the neotectonics around the peninsula. The study has been conducted using macrocosmic data obtained from historical literature, and instrumental records recorded by the Worldwide Network of Standardized Seismographs(WWNSS). The seismicity of the peninsula was active from the 13th through the 17th centuries. A seismic quiescence began at the onset of the 18th century, and has continued for the last 200 years. Presently, the seismicity region is found to be active again. The return periods are determined by a statistical method based upon the cumulative magnitude recurrence. They indicate that the seismic risk is greater in the south or west than in the north or east of the peninsula. Focal mechanism solutions demonstrate that the neotectonic stress distribution in the Japan Sea is greatly influenced by the subduction of the Pacific Plate under the Eurasian Plate or the Philippine Sea Plate, even though the predominate local paleotectonics is controlled by the spreading of the earth's crut.

  • PDF

Application of 10Be Dating Technique for Marine Terrace Studies and Its Limitations (해안단구 연구를 위한 10Be 연대측정법의 적용과 한계점)

  • Shin, Jae-Ryul
    • Journal of the Korean earth science society
    • /
    • v.36 no.6
    • /
    • pp.512-519
    • /
    • 2015
  • Although Quaternary marine terraces and onshore paleo-shoreline records provide clues to our understanding for the mode and nature of neotectonics in the Korean peninsula, it cannot be accomplished without knowledge on both independent information of the past sea level records and tectonic deformation field together with precise results of numerical dating for higher terraces. This study reported cosmogenic radionuclides ($^{10}Be$) dating results conducted in higher terraces in the eastern and western coasts of the Korean peninsula. As a result, the measured concentration ratio of $^9Be/^{10}Be$ and the exposure ages were much younger than expected. It implies that either there is possibility of error in experimental processes or the samples experienced a complex exposure history probably included a burial at some stage. Considering the past climatic conditions around the Korean peninsula and a possible complex exposure history after the emergence of marine terrace, the discovery of a suitable study area and a sampling site are an essential part of successful $^{10}Be$ dating technique.

Neotectonic Crustal Deformation and Current Stress Field in the Korean Peninsula and Their Tectonic Implications: A Review (한반도 신기 지각변형과 현생 응력장 그리고 지구조적 의미: 논평)

  • Kim, Min-Cheol;Jung, Soohwan;Yoon, Sangwon;Jeong, Rae-Yoon;Song, Cheol Woo;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.169-193
    • /
    • 2016
  • In order to characterize the Neotectonic crustal deformation and current stress field in and around the Korean Peninsula and to interpret their tectonic implications, this paper synthetically analyzes the previous Quaternary fault and focal mechanism solution data and recent geotechnical in-situ stress data and examines the characteristics of crustal deformations and tectonic settings in and around East Asia after the Miocene. Most of the Quaternary fault outcrops in SE Korea occur along major inherited fault zones and show a NS-striking top-to-the-west thrust geometry, indicating that the faults were produced by local reactivation of appropriately oriented preexisting weaknesses under EW-trending pure compressional stress field. The focal mechanism solutions in and around the Korean Peninsula disclose that strike-slip faulting containing some reverse-slip component and reverse-slip faulting are significantly dominant on land and in sea area, respectively. The P-axes are horizontally clustered in ENE-WSW direction, whereas the T-axes are girdle-distributed in NNW direction. The geotechnical in-situ stress data in South Korea also indicate the ENE-trending maximum horizontal stress. The current crustal deformation in the Korean Peninsula is thus characterized by crustal contraction under regional ENE-WSW or E-W compression stress field. Based on the regional stress trajectories in and around East Asia, the current stress regime is interpreted to have resulted from the cooperation of westward shallow subduction of the Pacific Plate and collision of Indian and Eurasian continents, whereas the Philippine Sea plate have not a decisive effect on the stress-regime in the Korean Peninsula due to its high-angle subduction that resulted in dominant crust extension of the back-arc region. It is also interpreted that the Neotectonic crustal deformation and present-day tectonic setting of East Asia commenced with the change of the Pacific Plate motion during 5~3.2 Ma.