• Title/Summary/Keyword: Neonatal Mouse

Search Result 59, Processing Time 0.024 seconds

INFLUENCE OF CO-CULTURED FIBROBLASTS ON THE DIFFERENTIATION OF MOUSE CALVARIA-DERIVED UNDIFFERENTIATED MESENCHYMAL CELLS IN VITRO (복합 및 유격배양한 섬유모세포가 마우스 두개관 미분화간엽세포의 골세포 분화에 미치는 영향)

  • Hwang, Yu-Sun;Kim, Myung-Rae
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.2
    • /
    • pp.114-125
    • /
    • 2002
  • This study was designed to evaluate the influence of fibroblasts or connective tissue from mouse oral mucosa on differentiation of neonatal mouse calvaria-derived osteoblasts and mineralization of bone nodules. Primary cell cultures from mouse calvarial osteoblasts and 2-4 passaged fibroblasts from oral mucosa were co-cultured in monolayer cultures, devided into 6 experimental group according to cell density or cell confluency. Osteoblasts were also co-cultured with fibroblasts in $Transwell^{(R)}$ culture plate with different co-cultured period according to osteoblast differentiation. The alkaline phosphatase activity were measured in monolayer cultures and cultures using $Transwell^{(R)}$. The mineralized bone nodules were presented by Von Kossa staining and density of mineralized nodules was measured by image analysis. The connective tissues with or without osteoblast seeding were cultured and examined histologically by Von Kossa and Trichrome Goldner staining. The results were as follows; 1. Prolonged maturation of matrix and delayed mineralization of bone nodules were resulted in monolayer cultures. 2. Co-culture of fibroblast with osteoblast using $Transwell^{(R)}$ during osteoblast proliferation stage stimulated proliferation of osteoblasts and increased alkaline phosphatase activity and mineralization of bone nodules. 3. Co-culture of fibroblast with osteoblast using $Transwell^{(R)}$ during matrix mineralization stage decreased and delayed mineralization of bone nodules. 4. In vitro cultured connective tissue with osteoblast seeding resulted in proliferation of osteoblasts and matrix formation with mineralization.

The Effect of Fluoride and Aluminum on Bone Turnover in Mouse Calvarial Culture

  • Ahn, Hye-Won
    • Toxicological Research
    • /
    • v.14 no.2
    • /
    • pp.163-169
    • /
    • 1998
  • Fluoride (F), over a narrow concentration range, increases bone formation. Aluminum (Ai) too is biphasic in its action on bone, being mitogenic at very low levels and inhibitory at higher levels. Both F and Al are present in finished drinking water where the chemical interaction of these two agents is well characterized. F and AI, given individually, accumulate preferentially in bone. In addition. in vivo studies have shown that F causes the co-accumulation of Al in bone. Thus, it was necessary to determine the interactive effect of these two agents on bone mitogenesis. Calvaria were obtained from neonatal CD-1 mice and cultured with various concentrations of F (0.05~19 ppm) as NaF, Al (2 ppb~2 ppm) as $AlCl_3$ , or F and Al for 3 days at $37^{\circ}C$ on a rotating roller drum. Alkaline phosphatase activity in calvaria and $\beta$-glucuronidase activity in culture medium were determined as a measures of bone turnover. Alkaline phosphatase activity in calvaria was significantly increased by F (0.05~2 ppm) treatment and $\beta$-glucuronidase activity was slightly increased in the culture medium of calvaria treated with 0.3 ppm Al. The combination of 19 ppm F and 0.3 ppm Al increased alkaline phosphatase activity in calvaria, but did not affect $\beta$-glucuronidase activity, suggesting the interactive effect of fluoride and aluminum on bone turnover.

  • PDF

Effect of Radix Polygoni Multiflori on Spinal Motor Neurons Damaged by Methylmercuric Chloride (메틸수은으로 손상된 척수신경세포에 대한 하수오의 영향)

  • Ha Dae Ho;Lee Byung Chan;Lee Kang Chang;Lee Whan Bong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.738-741
    • /
    • 2003
  • In order to evaluate the cytotoxicity of methylmercuric chloride(MMC) in cultured spinal motor neurons of neonatal mouse, cell viability was measured by MTT assay in spinal motor neurons treated with 1-30 μM MMC for 48 hours. And also, the protective effect of Radix Polygoni Multiflori(RPM) was examined by cell viability in these cultures. Cell viability was significantly decreased in dose-dependent manner after cultured cells were exposured to 20 μM MMC for 48 hours. Protective effect of RPM on MMC-mediated toxicity was very effective in these cultures. From above the results, it suggests that MMC has toxic effect in cultured mouse spinal motor neurons and herb extract such as RPM is very effective in blocking the neurotoxicity induced by MMC.

Effect of NMDA receptor antagonist on Osteoblasts Damaged by Methylmercuric Chloride (메틸수은으로 손상된 골모세포에 대한 NMDA 수용체길항제의 영향)

  • Ha Dae Ho;Yang Hyun Woong;Lee Joung Hwa;Lee Kang Chag
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.412-415
    • /
    • 2003
  • In order to elucidate the mechanism between cytotoxicity of methhylmercuric chloride(MMC) and oxygen radicals in cultured osteoblasts of neonatal mouse, cell viability was measured by MTT assay in osteoblasts treated with 1~50 μM MMC for 30 hours. And also, the protective effect of N-methyl D-aspartate(NMDA) receptor antagonist, D-2-amino-5-phosphovaleric acid(APV) was examined by cell viability in these cultures. Cell viability was significantly decreased in dose dependently after exposure of 30 μM MMC to cultured osteoblasts for 30 hours. Protective effect of APV against MMC-mediated toxicity was very effective in these cultures. From above the results, it suggests that MMC is toxic in cultured mouse osteoblasts and NMDA receptor antagonist such as APV is effective in blocking the osteotoxicity induced by MMC.

Resistance Activity of Kyung-Ok-Ko on Thermal Stress in C. elegans (경옥고(瓊玉膏)의 열 스트레스에 의한 피부노화 억제 활성)

  • Won-Seok Jung;Sung-Young Cho;Hyun-Woo Cho;Hee-Woon Lee;Young‐IL Jeong;Hee-Taek Kim;Young-Bob Yu
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.37 no.1
    • /
    • pp.17-28
    • /
    • 2024
  • Objectives : This study was conducted to reveal the scientific mechanism of the anti-skin aging activity of Kyung-Ok-Ko(KOK), which is highly useful as a Korean traditional medicine and functional food. Methods : The skin wrinkle and aging inhibitory activity of KOK was confirmed through in vitro experiments of human dermal fibroblast neonatal cell(HDFn) and in vivo of C. elegans, and hairless mouse(SKH-1). Results : The amount of the C-terminus of the collagen precursor in the HDFn cell culture medium treated with KOK using an enzymes-linked immunoassay kit. The group treated with KOK 200㎍/㎖ was a 28.3% increase of collagen precursor compared to the control group. KOK showed inhibitory activity of MMP-1 compared to the control group at a concentration of 200㎍/㎖. In addition, KOK 200㎍/㎖ showed significant inhibitory activity of thermal stress and an oxidative stress compared to the control group in C. elegans. Furthermore, KOK showed a concentration-dependent(100mg/kg and 500mg/kg) anti-wrinkle formation effect in UV-irradiated hairless mouse(SKH-1). Additionally, when KOK was administered to UV-irradiated hairless mice, an increase in procollagen -1 and -3 genes expression was observed, and mmp-1 and mmp-9 genes, which increase collagen decomposition, decreased with the administration of KOK. Conclusions : The skin aging inhibition mechanism of Kyung-Ok-Ko(KOK) is presumed to be achieved through suppressing thermal stress and oxidative stress, suppressing mmp-1 and mmp-9 genes, and increasing procollagen-1 and procollagen-3.

MiR-182-5p Mediated by Exosomes Derived From Bone Marrow Mesenchymal Stem Cell Attenuates Inflammatory Responses by Targeting TLR4 in a Mouse Model of Myocardial Infraction

  • Chuang Sun;Wei Li;Yanhong Li;Jian Chen;Huixian An;Guangwei Zeng;Tingting Wang;Yazhou Guo;Changying Wang
    • IMMUNE NETWORK
    • /
    • v.22 no.6
    • /
    • pp.49.1-49.15
    • /
    • 2022
  • Exosomes derived from mesenchymal stem cells (MSCs) could protect against myocardial infarction (MI). TLR4 is reported to play an important role in MI, while microRNA-182-5p (miR-182-5p) negatively regulates TLR4 expression. Therefore, we hypothesize that MSCs-derived exosomes overexpressing miR-182-5p may have beneficial effects on MI. We generated bone marrow mesenchymal stem cells (BM-MSCs) and overexpressed miR-182-5p in these cells for exosome isolation. H2O2-stimulated neonatal mouse ventricle myocytes (NMVMs) and MI mouse model were employed, which were subjected to exosome treatment. The expression of inflammatory factors, heart function, and TLR4 signaling pathway activation were monitored. It was found that miR-182-5p decreased TLR4 expression in BM-MSCs and NMVMs. Administration of exosomes overexpressing miR-182-5p to H2O2-stimulated NMVMs enhanced cell viability and suppressed the expression of inflammatory cytokines. In addition, they promoted heart function, suppressed inflammatory responses, and de-activated TLR4/NF-κB signaling pathway in MI mice. In conclusion, miR-182-5p transferred by the exosomes derived from BM-MSCs protected against MI-induced impairments by targeting TLR4.

Mitochondrial superoxide anion (O2·-) inducible "mev-1" animal models for aging research

  • Ishii, Takamasa;Miyazawa, Masaki;Hartman, Phil S.;Ishii, Naoaki
    • BMB Reports
    • /
    • v.44 no.5
    • /
    • pp.298-305
    • /
    • 2011
  • Most intracellular reactive oxygen species (ROS), especially superoxide anion ($O_2^{{\bullet}_-}$) that is converted from oxygen, are overproduced by excessive electron leakage from the mitochondrial respiratory chain. Intracellular oxidative stress that damages cellular components can contribute to lifestyle-related diseases such as diabetes and arteriosclerosis, and age-related diseases such as cancer and neuronal degenerative diseases. We have previously demonstrated that the excessive mitochondrial $O_2^{{\bullet}_-}$ production caused by SDHC mutations (G71E in C. elegans, I71E in Drosophila and V69E in mouse) results in premature death in C. elegans and Drosophila, cancer in mouse embryonic fibroblast cells and infertility in transgenic mice. SDHC is a subunit of mitochondrial complex II. In humans, it has been reported that mutations in SDHB, SDHC or SDHD often result in inherited head and neck paragangliomas (PGLs). Recently, we established Tet-mev-1 conditional transgenic mice using our uniquely developed Tet-On/Off system, which equilibrates transgene expression to endogenous levels. These mice experienced mitochondrial respiratory chain dysfunction that resulted in $O_2^{{\bullet}_-}$ overproduction. The mitochondrial oxidative stress caused excessive apoptosis leading to low birth weight and growth retardation in the neonatal developmental phase in Tet-mev-1 mice. Here, we briefly describe the relationships between mitochondrial $O_2^{{\bullet}_-}$ and aging phenomena in mev-1 animal models

Radioautographical observations of development and appearance of glia cells in brain I. Apperarace of ectodermal glial cell aggregates in rodent brain (뇌신경교세포(腦神經膠細胞) 집단(集團)의 발생(發生)과 이동(移動)에 대한 방사선(放射線) 자기법적(自記法的) 관찰 I, 설치류 뇌(腦)에 외배엽성(外胚葉性) 신경교세포(神經膠細胞) 집단(集團)의 출현(出現)에 대하여)

  • Kwak, Soo-dong
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.4
    • /
    • pp.481-487
    • /
    • 1992
  • The present study was designed to investigate the appearance of the congenital aggregates of the ectodermal glial cells in the brain of the normal rodents. The brain samples were taken from mice fetus, juvenile mice, rats and rabbits. The appearance regions of the glial cell aggregates (GCA) were investigated and the cells in the GCA were identified with electron microscope. 1. GCA in the mouse fetus tended to be higher in cell density, larger in size and lower frequency in appearance than juvenile mouse. The regions of higher appearance frequency of GCA in the juveniles of mice, rats and rabbits were ordered as subependymal layer in the collateral trigone of lateral ventricles, molecular layer of the neocortex, inner layer except the molecular layer in the neocortex, cerebral medulla, corpus callosum and hippocampus. Appearance frequency of GCA in the neonatal mice tended to be higher until 5 day after birth, and were markedly decreased on 10 and 15 day after birth. 2. GCA tended to be closed on one side of the blood vessels or neurons but not perivascular or perineuronal appearance. 3. In electron microscophy, GCA were composed of immature oligodendrocytes and astrocytes in the subependymal, and tended to be more mature and loose in the neocortex and to be appended some microglia cells with age. The cells in the GCA of older mice tended to be more mature than in young mice.

  • PDF

The effects of Korean Red Ginseng-derived components on oligodendrocyte lineage cells: Distinct facilitatory roles of the non-saponin and saponin fractions, and Rb1, in proliferation, differentiation and myelination

  • Lee, Ahreum;Kwon, Oh Wook;Jung, Kwi Ryun;Song, Gyun Jee;Yang, Hyun-Jeong
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.104-114
    • /
    • 2022
  • Background: Abnormalities of myelin, which increases the efficiency of action potential conduction, are found in neurological disorders. Korean Red Ginseng (KRG) demonstrates therapeutic efficacy against some of these conditions, however effects on oligodendrocyte (OL)s are not well known. Here, we examined the effects of KRG-derived components on development and protection of OL-lineage cells. Methods: Primary OL precursor cell (OPC) cultures were prepared from neonatal mouse cortex. The protective efficacies of the KRG components were examined against inhibitors of mitochondrial respiratory chain activity. For in vivo function of Rb1 on myelination, after 10 days of oral gavage into adult male mice, forebrains were collected. OPC proliferation were assessed by BrdU incorporation, and differentiation and myelination were examined by qPCR, western blot and immunocytochemistry. Results: The non-saponin promoted OPC proliferation, while the saponin promoted differentiation. Both processes were mediated by AKT and extracellular regulated kinase (ERK) signaling. KRG extract, the saponin and non-saponin protected OPCs against oxidative stress, and both KRG extract and the saponin significantly increased the expression of the antioxidant enzyme. Among 11 major ginsenosides tested, Rb1 significantly increased OL membrane size in vitro. Moreover, Rb1 significantly increased myelin formation in adult mouse brain. Conclusion: All KRG components prevented OPC deaths under oxidative stress. While non-saponin promoted proliferation, saponin fraction increased differentiation and OL membrane size. Furthermore, among all the tested ginsenosides, Rb1 showed the biggest increase in the membrane size and significantly enhanced myelination in vivo. These results imply therapeutic potentials of KRG and Rb1 for myelin-related disorders.

GABAergic neuronal development in the embryonic mesencephalon of mice

  • Kim, Mun-Ki;Lee, Si-Joon;Vasudevan, Anju;Won, Chung-Kil
    • Korean Journal of Veterinary Research
    • /
    • v.59 no.4
    • /
    • pp.201-205
    • /
    • 2019
  • This study presents neurogenesis and neuronal migration patterns of gamma-aminobutyric acid-ergic (GABAergic) neurons during mesencephalic development of mouse. After neurons from embryonic day (E) 10-16 were labelled by a single injection of 5-bromo-2'-deoxyuridine (BrdU), immunohistochemistry was performed. Neurogenesis were mainly generated in the mesencephalic region at E10 to E13. After E14, BrdU positive cells were observed only in the dorsal mesencephalon. GABAergic neurons were mainly originated in the ventrolateral region of the mesencephalon at the early embryonic stage, especially at E11 to E13. E10-labeled cells showed positive for GABAergic neuron in the basal plate of the mesencephalon at E13. At E15, GABAergic neurons were observed in the entire basal plate and some regions of the ventral and dorsal mesencephalon. They were present in the whole basal plate, the ventral and dorsal mesencephalon of E17, spreading more outward of the mesencephalon at P0. Our study demonstrates that major neurogenesis of GABAergic neurons occurs at E11 to E13. However, neuronal migration continues until neonatal period during mesencephalic development.