• Title/Summary/Keyword: Neobalanocarpus heimii

Search Result 3, Processing Time 0.017 seconds

Mass Spectrometric Analysis for Discrimination of Diastereoisomers

  • Manshoor, Nurhuda;Weber, Jean-Fré
    • Mass Spectrometry Letters
    • /
    • v.6 no.4
    • /
    • pp.99-104
    • /
    • 2015
  • A liquid chromatography mass spectrometry (LC-MS) system was used to identify and distinguish oligostilbene diastereoisomers. A polyphenolic extract from Neobalanocarpus heimii known to be rich in oligostilbenes of various degrees of condensation was used as test material. Fourteen oligostilbenes were isolated from this extract on a fully automated semi-preparative HPLC system. Out of these, two pairs of dimers, one pair of trimers, two pairs of tetramers and a group of four tetramers with similar skeleton were identified as diastereoisomers. Their structures and configurations were established by spectroscopic methods. All isolated compounds were subjected to an LC-MS/MS to study their fragmentation patterns. The experiments were performed on a liquid chromatography-mass spectrometry (LC-MS) with electrospray-ionization (ESI) interface in positive mode. MS/MS spectra of each pure compound were recorded by direct infusion in identical conditions and their product ion spectra were analysed. Some subtle yet significant differences were observed between the spectra of oligostilbenes from the various diastereoisomeric series.

Mass Fragmentation Patterns as Fingerprints for Positive Identification of Polyphenolic Compounds in a Crude Extract

  • Manshoor, Nurhuda;Weber, Jean-Frederic F.
    • Mass Spectrometry Letters
    • /
    • v.6 no.4
    • /
    • pp.105-111
    • /
    • 2015
  • Sixteen compounds of Neobalanocarpus heimii were successfully identified directly from their plant extract using a triple quadrupole LC-MS/MS system. In order to fulfil the objectives of this work, a series of stilbene oligomers of various degrees of condensation were isolated and their structure are characterized. Out of these, four are resveratrol dimers, three trimers, and nine tetramers. The isolation process was done on a fully automated semi-preparative HPLC system. Their structures were elucidated on the basis of 1D- and 2D-NMR as well as MS data. The mass fragmentation patterns of the compounds were recorded and a retrievable in-house library was built to keep the data. In order to demonstrate the potential of this approach, the polyphenolic crude extract was analysed with the LC-MS/MS system and the MS/MS spectra extracted for each chromatographic peak of interest. The fragmentation patterns were compared with those of anticipated pure compounds that were previously recorded. All compounds were successfully identified. It is therefore believed that the LC-MS/MS potential for dereplication of structurally similar compounds in a crude mixture was thus firmly established.

Micromorphological and Chemical Characteristics of Cengal (Neobalanocarpus heimii) Heartwood Decayed by Soft Rot Fungi

  • Kim, Yoon Soo;Singh, Adya P.;Wong, Andrew H.H.;Eom, Tae-Jin;Lee, Kwang Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.68-77
    • /
    • 2006
  • The heartwood of cengal (Neobalanocarpus heimii) is known to have a high degree of decay resistance by virtue of its high extractive content. After 30 years in ground contact an utility pole of this tropical hardwood was found to be degraded only in the surface layers by cavity-forming soft rot fungi. The present work was undertaken 1) to characterize the degradation of cengal heartwood from the aspect of ultrastructure and chemistry and 2) to investigate the correlation between soft rot decay and its extractive microdistribution in wood tissues. The chemical analysis of cengal heartwood revealed the presence of a high amount of extractives as well as lignin. The wood contained a relatively high amount of condensed lignin and the guaiacyl units. Microscopic observations revealed that vessels, fibers and parenchyma cells (both ray and axial parenchyma) all contained extractives in their lumina, but in variable amounts. The lumina of fibers and most axial parenchyma were completely or almost completely filled with the extractives. TEM micrographs showed that cell walls were also impregnated with extractives and that pit membranes connecting parenchyma cells were well coated and impregnated with extractives. However, fungal hyphae were present in the extractive masses localized in cell lumina, and indications were that the extractives did not completely inhibit fungal growth. The extent of cell wall degradation varied with tissue types. The fibers appeared to be more susceptible to decay than vessels and parenchyma. Middle lamella was the only cell wall region which remained intact in all cell types which were severely degraded. The microscopic observations suggested a close correlation between extractive microdistribution and the pattern and extent of cell wall degradation. In addition to the toxicity to fungi, the physical constraint of the extractive material present in cengal heartwood cells is likely to have a profound effect on the growth and path of invasion of colonizing fungi, thus conferring protection to wood by restricting fungal entry into cell walls. The presence of relatively high amount of condensed lignin is also likely to be a factor in the resistance of cengal heartwood to soft rot decay.