• Title/Summary/Keyword: Neighborhood electric vehicle

Search Result 18, Processing Time 0.029 seconds

The Effect Analysis of NEV(Neighborhood Electric Vehicle) Driving - with VISSIM Simulation - (저속형 전기자동차 주행시 시스템 영향분석 - VISSIM 시뮬레이션을 이용하여 -)

  • Yoon, Tae-Kwan;Baik, Nam-Cheol;Jung, In-Taek
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.2
    • /
    • pp.77-82
    • /
    • 2012
  • To share the lanes with conventional vehicles, traffic operation strategy is needed for NEV (Neighborhood Electric Vehicle). Because NEV cannot accelerate sharply as fast as common car include gasoline, diesel and LPG cars, they may interrupt traffic conditions and make traffic delay. After green lights turn on, all vehicles run through the street including NEV, but NEV have a maximum speed which is 50km/h. It can be an obstacle for following vehicles and will make traffic delay of the intersection. In this reason, we need to organize traffic systems like queue jump with priority traffic signal. To analyze the necessity for NEV road operations, we simulate three scenarios in congested and non-congested conditions. First is that we examine the condition which is mixed NEV and cars on the road, the second one is that we set up lane only NEV can accepted in simulation and last one is making queue jump lane and providing priority signal for NEV. In conclusion, we can conclude that making lane only for NEV is effective to improve travel speed when rate of NEVs is over 20%. Also queue jump lane and priority signal cannot make good effect to intersection delay and average speed.

The Efficiency Characteristics of Electric Vehicle (EV) According to the Diverse Driving Modes and Test Conditions (다양한 주행모드 및 시험 조건에 따른 전기자동차 효율 특성)

  • LEE, MIN-HO;KIM, SUNG-WOO;KIM, KI-HO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.56-62
    • /
    • 2017
  • Although most electricity production contributes to air pollution, the vehicle organizations and environmental agency categorizes all EVs as zero-emission vehicles because they produce no direct exhaust or emissions. Currently available EVs have a shorter range per charge than most conventional vehicles have per tank of gas. EVs manufacturers typically target a range of 160 km over on a fully charged battery. The energy efficiency and driving range of EVs varies substantially based on driving conditions and driving habits. Extreme outside temperatures tend to reduce range, because more energy must be used to heat or cool the cabin. High driving speeds reduce range because of the energy required to overcome increased drag. Compared with gradual acceleration, rapid acceleration reduces range. Additional devices significant inclines also reduces range. Based on these driving modes and climate conditions, this paper discusses the performance characteristics of EVs on energy efficiency and driving range. Test vehicles were divided by low / high-speed EVs. The difference of test vehicles are on the vehicle speed and size. Low-speed EVs is a denomination for battery EVs that are legally limited to roads with posted speed limits as high as 72 km/h depending on the particular laws, usually are built to have a top speed of 60 km/h, and have a maximum loaded weight of 1,400 kg. Each vehicle test was performed according to the driving modes and test temperature ($-25^{\circ}C{\sim}35^{\circ}C$). It has a great influence on fuel efficiency amd driving distance according to test temperature conditions.

The Power Control of Neighborhood Electric Vehicle System Using Photovoltaic (태양광 발전을 이용한 NEV용 시스템 전력제어)

  • Jung, Chul-Ho;Lee, Jung-Hyo;Lee, Hee-Jun;Kim, Young-Real;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.60-61
    • /
    • 2011
  • 본 논문에서는 태양광 모듈을 이용한 발전 시스템과 전기자동차용 양방향 배터리 시스템을 결합한 하이브리드 시스템을 제안 하였다. 병렬 구조를 가진 시스템을 전력제어 함으로써 배터리의 전력을 효율적으로 사용할 수 있다. 이에 따라 제안된 알고리즘의 타당성을 시뮬레이션 모델을 통하여 검증하였다.

  • PDF

The analysis of two-lane highway traffic flows in case of the neighborhood electric vehicle involved (2차로도로에서 저속전기자동차 혼입에 따른 교통류 특성분석)

  • Jang, Keun-Woo;Jung, Sung-Hwa;Cho, Ju-Myung;Jung, Phil-Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.5
    • /
    • pp.124-134
    • /
    • 2011
  • To make popular the NEV(Neighborhood Electric Vehicles) uses, it must be considered the supply of infrastructure and the political decision for NEV. However, the guidelines of infrastructure for NEV are not prepared. The guidelines of infrastructure for NEV should be performed in many research and case. The purpose of this study is to reveal the influence of NEV on the two-lane highway traffic flows by TWOPAS simulation model. The main items to check the influence are Average Travel speed, Percent Time Spent Following and Total Delay. The scenario were setup by traffic volume. And the NEV percentages are changed from 1% ~ 30%. The scenario 1 which traffic volume are 650veh/h and the scenario 4 which traffic volume are 2,600veh/h are less influenced by NEV, compare to scenario 2, scenario 3. Because the scenario 1 is more free to make passing other cars and Scenario 4 is fully saturated with existing traffic volumes. The urban two-lane highway which has much traffic volume and the rural two-lane highway which has little traffic volume has affinity for NEV than the other two-lane highway.

Development of 50kW High Efficiency Modular Fast Charger for Both EV and NEV (EV와 NEV 겸용 50kW급 고효율 모듈형 급속충전기 개발)

  • Kim, Min-Jae;Kim, Yeon-Woo;Prabowo, Yos;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.373-380
    • /
    • 2016
  • In this paper, a 50-kW high-efficiency modular fast charger for both electric vehicle (EV) and neighborhood electric vehicle (NEV) is proposed. The proposed fast charger consists of five 10-kW modules to achieve fault tolerance, ease of thermal management, and reduce component stress. Three-level topologies for both AC-DC and DC-DC converters are employed to use 600V MOSFET, resulting in ease of component selection and increase in switching frequency. The proposed three-level DC-DC converter with coupled inductor and its hybrid switching method can reduce the circulating current under wide output voltage range. A 50-kW prototype of the proposed fast charger was developed and tested to verify the validity of the proposed concept. Experimental results show that the proposed fast charger achieves a rated efficiency of 95.2% and a THD of less than 3%.

Flow Analyses around the Battery Pack for a NEV (전기자동차용 배터리 팩 주위의 유동장 해석)

  • Kim, H.S.;Han, B.Y.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.135-140
    • /
    • 2011
  • The battery pack, a main component of NEV(Neighborhood Electric Vehicle), needs cooling system when it is charging or discharging to prevent the degradation of the battery charging efficiency. The purpose of this study is to analyse the effects of cooling methods, changing positions of inlet and outlet and changing area ratios of inlet and outlet. It has been observed that in the point of uniform cooling suction from the exit side is more efficient than blowing from the inlet. And there is a suitable inlet/outlet area ratio in maximizing the mass flow rate. The numerical analyse using a commercial code STAR-CCM+ version 4.02 were used for the study.

  • PDF

FLOW ANALYSES AROUND THE BATTERY PACK FOR A NEV (전기자동차용 배터리 팩 주위의 유동장 해석)

  • Kim, H.S.;Han, B.Y.;Park, H.K.
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.82-87
    • /
    • 2011
  • The battery pack, a main component of NEV(Neighborhood Electric Vehicle), needs cooling system when it is charging or discharging to prevent the degradation of the battery charging efficiency. The purpose of this study is to analyse the effects of cooling methods, changing positions of inlet and outlet and changing area ratios of inlet and outlet. It has been observed that in the point of uniform cooling, suction from the exit side is more efficient than blowing from the inlet. And there is a suitable inlet/outlet area ratio in maximizing the mass flow rate. A commercial code, STAR-CCM+(ver. 4.02), was used for the numerical study.

Analysis on Efficiency Characteristics of IPMSM for fuel Economy Improve of Electric Vehicle (전기자동차의 연비향상을 위한 매입형 영구자석 동기전동기의 효율특성 분석)

  • Kim, Jong-Hee;Kim, Ki-Chan;Lee, Dae-Dong
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2018
  • Electric motors for electric vehicles differ in efficiency characteristics depending on the operation modes, studies for evaluating high efficiency characteristics in low speed and high speed operation modes are very important. Therefore, it is necessary to design method that can change the high torque, high output density, and high efficiency characteristics of driving motors for electric vehicles. In this paper, the diameter ratio of stator and rotor for the interior permanent magnet synchronous motor is change of designed 0.62, 0.65, and 0.68, respectively, and the efficiency characteristics of the entire operation section, average efficiency characteristics of the city driving modes and express highway driving modes are analyzed. As a result of analyzing the efficiency characteristics of the entire operating section, it was confirmed that as the diameter ratio increases, the high efficiency section moves to the low speed and low torque section and the high efficiency section moves to the high speed and low torque neighborhood as the diameter ratio decreases. As a result of analyzing the average efficiency characteristics in the city driving modes and express highway driving modes, the average efficiency of 0.68 model is analyzed to be more efficient than the 0.63 and 0.65 model ratio, and it is confirmed that it is suitable for city driving modes and express highway driving modes.